Parthebhan commited on
Commit
1fedaae
·
verified ·
1 Parent(s): 2329c5c

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +52 -0
app.py ADDED
@@ -0,0 +1,52 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import pickle
2
+ import gradio as gr
3
+
4
+ # Load the pickled model
5
+ with model = tf.keras.models.load_model("census.h5")
6
+
7
+ # Define the function for making predictions
8
+ def salarybracket(age, workclass, education, education_num, marital_status, occupation, relationship, race, gender, capital_gain, capital_loss, hours_per_week, native_country):
9
+ inputs = [[age, workclass, education, education_num, marital_status, occupation, relationship, race, gender, capital_gain, capital_loss, hours_per_week, native_country]]
10
+ prediction = model.predict(inputs)
11
+ prediction_value = prediction[0]
12
+
13
+ # Categorize prediction_value
14
+ if prediction_value == 0:
15
+ result = "Income_bracket lesserthan or equal to 50K "
16
+ else:
17
+ result = "Income_bracket greater than to 50K"
18
+
19
+ return f"Income_bracket Prediction: {prediction_value} \n\nResult: {result}"
20
+
21
+
22
+
23
+ # Create the Gradio interface
24
+ cerviccancer_ga = gr.Interface(fn=cerviccancer,
25
+ inputs = [
26
+ gr.Number(13.0, 84.0, label="Age: [13 to 84]"),
27
+ gr.Number(1.0, 28.0, label="workclass: [1 to 28]"),
28
+ gr.Number(10.0, 32.0, label="education: [10 to 32]"),
29
+ gr.Number(0.0, 11.0, label="education_num: [0 to 11]"),
30
+ gr.Number(0.0, 1.0, label="marital_status: [0 or 1]"),
31
+ gr.Number(0.0, 37.0, label="occupation: [0 to 37]"),
32
+ gr.Number(0.0, 37.0, label="relationship: [0 to 37]"),
33
+ gr.Number(0.0, 1.0, label="race: [0 or 1]"),
34
+ gr.Number(0.0, 30.0, label="gender: [0 to 30]"),
35
+ gr.Number(0.0, 1.0, label="capital_gain: [0 or 1]"),
36
+ gr.Number(0.0, 19.0, label="capital_loss: [0.0 19.0]"),
37
+ gr.Number(0.0, 1.0, label="hours_per_week: [0 or 1]"),
38
+ gr.Number(0.0, 1.0, label="native_country: [0 or 1]"),
39
+ ],
40
+ outputs="text", title="Cervical Cancer Risk Prediction",
41
+ examples = [
42
+ [75,0,0,6,6,0,2,1,0,0,0,1,3,0,0],
43
+ [25,4,11,9,2,13,2,4,0,0,0,48,38,1,1],
44
+ [29,4,1,7,4,3,3,2,1,0,0,40,14,0,0],
45
+ [51,5,12,14,2,4,0,4,1,15024,0,50,38,1,1],
46
+ [66,0,15,10,2,0,0,4,1,0,1825,40,38,1,1],
47
+ ],
48
+ description="Predicting Income_bracket Prediction Using Machine Learning",
49
+ theme='dark'
50
+ )
51
+
52
+ cerviccancer_ga.launch(share=True,debug=True)