Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,127 +1,22 @@
|
|
1 |
-
import math
|
2 |
-
from io import BytesIO
|
3 |
import gradio as gr
|
4 |
import cv2
|
5 |
-
import
|
6 |
-
import
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
TEXT_API_URL = "https://api-inference.huggingface.co/models/SamLowe/roberta-base-go_emotions"
|
16 |
-
headers = {"Authorization": "Bearer " + API_KEY + ""}
|
17 |
-
|
18 |
-
|
19 |
-
def extract_frames(video_path):
|
20 |
-
cap = cv2.VideoCapture(video_path)
|
21 |
fps = int(cap.get(cv2.CAP_PROP_FPS))
|
22 |
total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
|
23 |
-
interval = fps
|
24 |
-
|
25 |
-
|
26 |
-
for i in range(0, total_frames, interval):
|
27 |
-
cap.set(cv2.CAP_PROP_POS_FRAMES, i)
|
28 |
-
ret, frame = cap.read()
|
29 |
-
if ret:
|
30 |
-
_, img_encoded = cv2.imencode('.jpg', frame)
|
31 |
-
img_bytes = img_encoded.tobytes()
|
32 |
-
|
33 |
-
response = requests.post(FACE_API_URL, headers=headers, data=img_bytes)
|
34 |
-
result.append({item['label']: item['score'] for item in response.json()})
|
35 |
-
|
36 |
-
print("Frame extraction completed.")
|
37 |
-
|
38 |
-
cap.release()
|
39 |
-
print(result)
|
40 |
-
return result
|
41 |
-
|
42 |
-
|
43 |
-
def analyze_sentiment(text):
|
44 |
-
response = requests.post(TEXT_API_URL, headers=headers, json=text)
|
45 |
-
print(response.json())
|
46 |
-
sentiment_list = response.json()[0]
|
47 |
-
print(sentiment_list)
|
48 |
-
sentiment_results = {result['label']: result['score'] for result in sentiment_list}
|
49 |
-
return sentiment_results
|
50 |
-
|
51 |
-
|
52 |
-
def video_to_audio(input_video):
|
53 |
-
audio = AudioSegment.from_file(input_video)
|
54 |
-
audio_binary = audio.export(format="wav").read()
|
55 |
-
audio_bytesio = BytesIO(audio_binary)
|
56 |
-
|
57 |
-
segments, info = model.transcribe(audio_bytesio, beam_size=5)
|
58 |
-
|
59 |
-
print("Detected language '%s' with probability %f" % (info.language, info.language_probability))
|
60 |
-
|
61 |
-
frames_sentiments = extract_frames(input_video)
|
62 |
-
|
63 |
-
transcript = ''
|
64 |
-
final_output = []
|
65 |
-
for segment in segments:
|
66 |
-
transcript = transcript + segment.text + " "
|
67 |
-
print("[%.2fs -> %.2fs] %s" % (segment.start, segment.end, segment.text))
|
68 |
-
transcript_segment_sentiment = analyze_sentiment(segment.text)
|
69 |
-
|
70 |
-
emotion_totals = {
|
71 |
-
'admiration': 0.0,
|
72 |
-
'amusement': 0.0,
|
73 |
-
'angry': 0.0,
|
74 |
-
'annoyance': 0.0,
|
75 |
-
'approval': 0.0,
|
76 |
-
'caring': 0.0,
|
77 |
-
'confusion': 0.0,
|
78 |
-
'curiosity': 0.0,
|
79 |
-
'desire': 0.0,
|
80 |
-
'disappointment': 0.0,
|
81 |
-
'disapproval': 0.0,
|
82 |
-
'disgust': 0.0,
|
83 |
-
'embarrassment': 0.0,
|
84 |
-
'excitement': 0.0,
|
85 |
-
'fear': 0.0,
|
86 |
-
'gratitude': 0.0,
|
87 |
-
'grief': 0.0,
|
88 |
-
'happy': 0.0,
|
89 |
-
'love': 0.0,
|
90 |
-
'nervousness': 0.0,
|
91 |
-
'optimism': 0.0,
|
92 |
-
'pride': 0.0,
|
93 |
-
'realization': 0.0,
|
94 |
-
'relief': 0.0,
|
95 |
-
'remorse': 0.0,
|
96 |
-
'sad': 0.0,
|
97 |
-
'surprise': 0.0,
|
98 |
-
'neutral': 0.0
|
99 |
-
}
|
100 |
-
|
101 |
-
counter = 0
|
102 |
-
for i in range(math.ceil(segment.start), math.floor(segment.end)):
|
103 |
-
for emotion in frames_sentiments[i].keys():
|
104 |
-
emotion_totals[emotion] += frames_sentiments[i].get(emotion)
|
105 |
-
counter += 1
|
106 |
-
|
107 |
-
for emotion in emotion_totals:
|
108 |
-
emotion_totals[emotion] /= counter
|
109 |
-
|
110 |
-
video_segment_sentiment = emotion_totals
|
111 |
-
|
112 |
-
segment_finals = {segment.id: (segment.text, segment.start, segment.end, transcript_segment_sentiment,
|
113 |
-
video_segment_sentiment)}
|
114 |
-
final_output.append(segment_finals)
|
115 |
-
print(segment_finals)
|
116 |
-
print(final_output)
|
117 |
-
|
118 |
-
print(final_output)
|
119 |
-
|
120 |
-
return final_output
|
121 |
|
|
|
122 |
|
123 |
-
|
124 |
-
|
125 |
-
inputs=gr.Video(sources=["upload"]),
|
126 |
-
outputs=gr.Textbox()
|
127 |
-
).launch()
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
import cv2
|
3 |
+
import moviepy.editor as mpe
|
4 |
+
from moviepy.editor import VideoFileClip
|
5 |
+
|
6 |
+
def process(video_path):
|
7 |
+
print(video_path)
|
8 |
+
|
9 |
+
clip = mpe.VideoFileClip(video_path)
|
10 |
+
clip.write_videofile('mp4file.mp4', fps=60)
|
11 |
+
|
12 |
+
cap = cv2.VideoCapture('mp4file.mp4')
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
fps = int(cap.get(cv2.CAP_PROP_FPS))
|
14 |
total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
|
15 |
+
interval = int(fps/2)
|
16 |
+
print(interval, total_frames)
|
17 |
+
return interval, total_frames
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
|
19 |
+
demo = gr.Interface(fn=process, inputs=gr.Video(format='mp4'), outputs=["textbox", "textbox"], title="Video Frame Counter")
|
20 |
|
21 |
+
if __name__ == "__main__":
|
22 |
+
demo.launch()
|
|
|
|
|
|