Test_Video / app.py
ParthCodes's picture
Update app.py
aa0a778 verified
raw
history blame
11.7 kB
import math
import os
from io import BytesIO
import gradio as gr
import cv2
from PIL import Image
import requests
from transformers import pipeline
from pydub import AudioSegment
from faster_whisper import WhisperModel
import joblib
import mediapipe as mp
import numpy as np
import pandas as pd
import moviepy.editor as mpe
theme = gr.themes.Base(
primary_hue="cyan",
secondary_hue="blue",
neutral_hue="slate",
)
model = WhisperModel("small", device="cpu", compute_type="int8")
body_lang_model = joblib.load('body_language.pkl')
mp_holistic = mp.solutions.holistic
holistic = mp_holistic.Holistic(min_detection_confidence=0.5, min_tracking_confidence=0.5)
mp_face_mesh = mp.solutions.face_mesh
face_mesh = mp_face_mesh.FaceMesh(min_detection_confidence=0.5, min_tracking_confidence=0.5)
API_KEY = os.getenv('HF_API_KEY')
pipe1 = pipeline("image-classification", model="dima806/facial_emotions_image_detection")
pipe2 = pipeline("text-classification", model="SamLowe/roberta-base-go_emotions")
AUDIO_API_URL = "https://api-inference.huggingface.co/models/ehcalabres/wav2vec2-lg-xlsr-en-speech-emotion-recognition"
headers = {"Authorization": "Bearer " + API_KEY + ""}
def extract_frames(video_path):
clip = mpe.VideoFileClip(video_path)
clip.write_videofile('mp4file.mp4', fps=60)
cap = cv2.VideoCapture('mp4file.mp4')
fps = int(cap.get(cv2.CAP_PROP_FPS))
total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
interval = int(fps/2)
print(interval, total_frames)
result = []
distract_count = 0
total_count = 0
output_list = []
for i in range(0, total_frames, interval):
total_count += 1
cap.set(cv2.CAP_PROP_POS_FRAMES, i)
ret, frame = cap.read()
if ret:
image = cv2.cvtColor(cv2.flip(frame, 1), cv2.COLOR_BGR2RGB)
image.flags.writeable = False
results = face_mesh.process(image)
image.flags.writeable = True
image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR)
img_h, img_w, img_c = image.shape
face_3d = []
face_2d = []
flag = False
if results.multi_face_landmarks:
for face_landmarks in results.multi_face_landmarks:
for idx, lm in enumerate(face_landmarks.landmark):
if idx == 33 or idx == 263 or idx == 1 or idx == 61 or idx == 291 or idx == 199:
if idx == 1:
nose_2d = (lm.x * img_w, lm.y * img_h)
nose_3d = (lm.x * img_w, lm.y * img_h, lm.z * 3000)
x, y = int(lm.x * img_w), int(lm.y * img_h)
face_2d.append([x, y])
face_3d.append([x, y, lm.z])
face_2d = np.array(face_2d, dtype=np.float64)
face_3d = np.array(face_3d, dtype=np.float64)
focal_length = 1 * img_w
cam_matrix = np.array([ [focal_length, 0, img_h / 2],
[0, focal_length, img_w / 2],
[0, 0, 1]])
dist_matrix = np.zeros((4, 1), dtype=np.float64)
success, rot_vec, trans_vec = cv2.solvePnP(face_3d, face_2d, cam_matrix, dist_matrix)
rmat, jac = cv2.Rodrigues(rot_vec)
angles, mtxR, mtxQ, Qx, Qy, Qz = cv2.RQDecomp3x3(rmat)
x = angles[0] * 360
y = angles[1] * 360
z = angles[2] * 360
if y < -7 or y > 7 or x < -7 or x > 7:
flag = True
else:
flag = False
if flag == True:
distract_count += 1
image2 = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
results2 = holistic.process(image2)
pose = results2.pose_landmarks.landmark
pose_row = list(np.array([[landmark.x, landmark.y, landmark.z, landmark.visibility] for landmark in pose]).flatten())
face = results2.face_landmarks.landmark
face_row = list(np.array([[landmark.x, landmark.y, landmark.z, landmark.visibility] for landmark in face]).flatten())
row = pose_row+face_row
X = pd.DataFrame([row])
body_language_class = body_lang_model.predict(X)[0]
body_language_prob = body_lang_model.predict_proba(X)[0]
output_dict = {}
for class_name, prob in zip(body_lang_model.classes_, body_language_prob):
output_dict[class_name] = prob
output_list.append(output_dict)
pil_image = Image.fromarray(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB))
response = pipe1(pil_image)
temp = {}
for ele in response:
label, score = ele.values()
temp[label] = score
result.append(temp)
distraction_rate = distract_count/total_count
total_bad_prob = 0
total_good_prob = 0
for output_dict in output_list:
total_bad_prob += output_dict['Bad']
total_good_prob += output_dict['Good']
num_frames = len(output_list)
avg_bad_prob = total_bad_prob / num_frames
avg_good_prob = total_good_prob / num_frames
final_output = {'Bad': avg_bad_prob, 'Good': avg_good_prob}
cap.release()
video_emotion_totals = {}
emotion_totals = { 'admiration': 0.0, 'amusement': 0.0, 'angry': 0.0, 'annoyance': 0.0, 'approval': 0.0, 'caring': 0.0, 'confusion': 0.0, 'curiosity': 0.0, 'desire': 0.0, 'disappointment': 0.0, 'disapproval': 0.0, 'disgust': 0.0, 'embarrassment': 0.0, 'excitement': 0.0, 'fear': 0.0, 'gratitude': 0.0, 'grief': 0.0, 'happy': 0.0, 'love': 0.0, 'nervousness': 0.0, 'optimism': 0.0, 'pride': 0.0, 'realization': 0.0, 'relief': 0.0, 'remorse': 0.0, 'sad': 0.0, 'surprise': 0.0, 'neutral': 0.0 }
counter = 0
for ele in result:
for emotion in ele.keys():
emotion_totals[emotion] += ele.get(emotion)
counter += 1
for emotion in emotion_totals:
emotion_totals[emotion] /= counter
if (emotion_totals[emotion]) > 0.0:
video_emotion_totals[emotion] = emotion_totals[emotion]
return video_emotion_totals, result, final_output, distraction_rate
def analyze_sentiment(text):
response = pipe2(text)
sentiment_results = {}
for ele in response:
label, score = ele.values()
sentiment_results[label] = score
return sentiment_results
def video_to_audio(input_video):
video_emotion_totals, frames_sentiments, body_language, distraction_rate = extract_frames(input_video)
print("Total Video Emotions ... Done")
print("Video Frame Sentiment ... Done")
print("Body Language ... Done")
print("Distraction Rate ... Done")
cap = cv2.VideoCapture(input_video)
fps = int(cap.get(cv2.CAP_PROP_FPS))
audio = AudioSegment.from_file(input_video)
audio_binary = audio.export(format="wav").read()
audio_bytesio = BytesIO(audio_binary)
audio_bytesio2 = BytesIO(audio_binary)
response = requests.post(AUDIO_API_URL, headers=headers, data=audio_bytesio)
formatted_response = {}
for ele in response.json():
score, label = ele.values()
formatted_response[label] = score
print("Speech Sentiments ... Done")
segments, info = model.transcribe(audio_bytesio2, beam_size=5)
transcript = ''
video_sentiment_final = []
final_output = []
for segment in segments:
transcript = transcript + segment.text + " "
transcript_segment_sentiment = analyze_sentiment(segment.text)
emotion_totals = {
'admiration': 0.0,
'amusement': 0.0,
'angry': 0.0,
'annoyance': 0.0,
'approval': 0.0,
'caring': 0.0,
'confusion': 0.0,
'curiosity': 0.0,
'desire': 0.0,
'disappointment': 0.0,
'disapproval': 0.0,
'disgust': 0.0,
'embarrassment': 0.0,
'excitement': 0.0,
'fear': 0.0,
'gratitude': 0.0,
'grief': 0.0,
'happy': 0.0,
'love': 0.0,
'nervousness': 0.0,
'optimism': 0.0,
'pride': 0.0,
'realization': 0.0,
'relief': 0.0,
'remorse': 0.0,
'sad': 0.0,
'surprise': 0.0,
'neutral': 0.0
}
counter = 0
for i in range(math.ceil(segment.start), math.floor(segment.end)):
for emotion in frames_sentiments[i].keys():
emotion_totals[emotion] += frames_sentiments[i].get(emotion)
counter += 1
for emotion in emotion_totals:
emotion_totals[emotion] /= counter
video_sentiment_final.append(emotion_totals)
video_segment_sentiment = {key: value for key, value in emotion_totals.items() if value != 0.0}
segment_finals = {segment.id: (segment.text, segment.start, segment.end, transcript_segment_sentiment, video_segment_sentiment)}
final_output.append(segment_finals)
total_transcript_sentiment = {key: value for key, value in analyze_sentiment(transcript).items() if value >= 0.01}
print("Full Transcript Sentiments ... Done")
emotion_finals = {
'admiration': 0.0,
'amusement': 0.0,
'angry': 0.0,
'annoyance': 0.0,
'approval': 0.0,
'caring': 0.0,
'confusion': 0.0,
'curiosity': 0.0,
'desire': 0.0,
'disappointment': 0.0,
'disapproval': 0.0,
'disgust': 0.0,
'embarrassment': 0.0,
'excitement': 0.0,
'fear': 0.0,
'gratitude': 0.0,
'grief': 0.0,
'happy': 0.0,
'love': 0.0,
'nervousness': 0.0,
'optimism': 0.0,
'pride': 0.0,
'realization': 0.0,
'relief': 0.0,
'remorse': 0.0,
'sad': 0.0,
'surprise': 0.0,
'neutral': 0.0
}
for i in range(0, video_sentiment_final.__len__()-1):
for emotion in video_sentiment_final[i].keys():
emotion_finals[emotion] += video_sentiment_final[i].get(emotion)
for emotion in emotion_finals:
emotion_finals[emotion] /= video_sentiment_final.__len__()
emotion_finals = {key: value for key, value in emotion_finals.items() if value != 0.0}
print("Video Frame (Mapping & AVG.) ... Done")
print("\nProcessing Completed!!\n")
payload = {
'from': 'gradio',
'total_video_emotions': video_emotion_totals,
'emotions_final': emotion_finals,
'body_language': body_language,
'distraction_rate': distraction_rate,
'formatted_response': formatted_response,
'total_transcript_sentiment': total_transcript_sentiment
}
print(payload)
response = requests.post('http://127.0.0.1:5000/interview', json=payload)
with gr.Blocks(theme=theme, css=".gradio-container { background: rgba(255, 255, 255, 0.2) !important; box-shadow: 0 8px 32px 0 rgba( 31, 38, 135, 0.37 ) !important; backdrop-filter: blur( 10px ) !important; -webkit-backdrop-filter: blur( 10px ) !important; border-radius: 10px !important; border: 1px solid rgba( 0, 0, 0, 0.5 ) !important;}") as Video:
input_video = gr.Video(sources=["upload", "webcam"], format='mp4')
input_video.stop_recording(fn=video_to_audio, inputs=input_video)
Video.launch()