Spaces:
Sleeping
Sleeping
update accuracy code
Browse files
app.py
CHANGED
@@ -22,6 +22,19 @@ import tqdm
|
|
22 |
import accelerate
|
23 |
import re
|
24 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
api_key = os.getenv('API_KEY')
|
26 |
|
27 |
|
@@ -249,30 +262,136 @@ def format_chat_history(message, chat_history):
|
|
249 |
return formatted_chat_history
|
250 |
|
251 |
|
252 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
253 |
formatted_chat_history = format_chat_history(message, history)
|
254 |
-
|
255 |
-
|
256 |
-
# Generate response using QA chain
|
257 |
response = qa_chain({"question": message, "chat_history": formatted_chat_history})
|
258 |
response_answer = response["answer"]
|
|
|
259 |
if response_answer.find("Helpful Answer:") != -1:
|
260 |
response_answer = response_answer.split("Helpful Answer:")[-1]
|
261 |
response_sources = response["source_documents"]
|
|
|
|
|
262 |
response_source1 = response_sources[0].page_content.strip()
|
263 |
response_source2 = response_sources[1].page_content.strip()
|
264 |
response_source3 = response_sources[2].page_content.strip()
|
265 |
-
|
266 |
response_source1_page = response_sources[0].metadata["page"] + 1
|
267 |
response_source2_page = response_sources[1].metadata["page"] + 1
|
268 |
response_source3_page = response_sources[2].metadata["page"] + 1
|
269 |
-
|
270 |
-
# print('DB source', response_sources)
|
271 |
-
|
272 |
-
# Append user message and response to chat history
|
273 |
new_history = history + [(message, response_answer)]
|
274 |
-
|
275 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
276 |
|
277 |
|
278 |
def upload_file(file_obj):
|
@@ -285,6 +404,30 @@ def upload_file(file_obj):
|
|
285 |
return list_file_path
|
286 |
|
287 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
288 |
def demo():
|
289 |
with gr.Blocks(theme="base") as demo:
|
290 |
vector_db = gr.State()
|
@@ -352,6 +495,21 @@ def demo():
|
|
352 |
with gr.Row():
|
353 |
submit_btn = gr.Button("Submit message")
|
354 |
clear_btn = gr.ClearButton([msg, chatbot], value="Clear conversation")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
355 |
|
356 |
# Preprocessing events
|
357 |
#upload_btn.upload(upload_file, inputs=[upload_btn], outputs=[document])
|
@@ -366,10 +524,13 @@ def demo():
|
|
366 |
queue=False)
|
367 |
|
368 |
# Chatbot events
|
369 |
-
msg.submit(
|
370 |
-
|
371 |
-
|
372 |
-
|
|
|
|
|
|
|
373 |
submit_btn.click(conversation, \
|
374 |
inputs=[qa_chain, msg, chatbot], \
|
375 |
outputs=[qa_chain, msg, chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page], \
|
@@ -378,6 +539,11 @@ def demo():
|
|
378 |
inputs=None, \
|
379 |
outputs=[chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page], \
|
380 |
queue=False)
|
|
|
|
|
|
|
|
|
|
|
381 |
demo.queue().launch(debug=True)
|
382 |
|
383 |
|
|
|
22 |
import accelerate
|
23 |
import re
|
24 |
|
25 |
+
|
26 |
+
import torch
|
27 |
+
from sacrebleu import corpus_bleu
|
28 |
+
from rouge_score import rouge_scorer
|
29 |
+
from bert_score import score
|
30 |
+
from transformers import GPT2LMHeadModel, GPT2Tokenizer, pipeline
|
31 |
+
import nltk
|
32 |
+
from nltk.util import ngrams
|
33 |
+
|
34 |
+
|
35 |
+
|
36 |
+
|
37 |
+
|
38 |
api_key = os.getenv('API_KEY')
|
39 |
|
40 |
|
|
|
262 |
return formatted_chat_history
|
263 |
|
264 |
|
265 |
+
|
266 |
+
|
267 |
+
|
268 |
+
###############################################
|
269 |
+
class RAGEvaluator:
|
270 |
+
def __init__(self):
|
271 |
+
self.gpt2_model, self.gpt2_tokenizer = self.load_gpt2_model()
|
272 |
+
self.bias_pipeline = pipeline("zero-shot-classification", model="Hate-speech-CNERG/dehatebert-mono-english")
|
273 |
+
|
274 |
+
def load_gpt2_model(self):
|
275 |
+
model = GPT2LMHeadModel.from_pretrained('gpt2')
|
276 |
+
tokenizer = GPT2Tokenizer.from_pretrained('gpt2')
|
277 |
+
return model, tokenizer
|
278 |
+
|
279 |
+
def evaluate_bleu_rouge(self, candidates, references):
|
280 |
+
bleu_score = corpus_bleu(candidates, [references]).score
|
281 |
+
scorer = rouge_scorer.RougeScorer(['rouge1', 'rouge2', 'rougeL'], use_stemmer=True)
|
282 |
+
rouge_scores = [scorer.score(ref, cand) for ref, cand in zip(references, candidates)]
|
283 |
+
rouge1 = sum([score['rouge1'].fmeasure for score in rouge_scores]) / len(rouge_scores)
|
284 |
+
return bleu_score, rouge1
|
285 |
+
|
286 |
+
def evaluate_bert_score(self, candidates, references):
|
287 |
+
P, R, F1 = score(candidates, references, lang="en", model_type='bert-base-multilingual-cased')
|
288 |
+
return P.mean().item(), R.mean().item(), F1.mean().item()
|
289 |
+
|
290 |
+
def evaluate_perplexity(self, text):
|
291 |
+
encodings = self.gpt2_tokenizer(text, return_tensors='pt')
|
292 |
+
max_length = self.gpt2_model.config.n_positions
|
293 |
+
stride = 512
|
294 |
+
lls = []
|
295 |
+
for i in range(0, encodings.input_ids.size(1), stride):
|
296 |
+
begin_loc = max(i + stride - max_length, 0)
|
297 |
+
end_loc = min(i + stride, encodings.input_ids.size(1))
|
298 |
+
trg_len = end_loc - i
|
299 |
+
input_ids = encodings.input_ids[:, begin_loc:end_loc]
|
300 |
+
target_ids = input_ids.clone()
|
301 |
+
target_ids[:, :-trg_len] = -100
|
302 |
+
with torch.no_grad():
|
303 |
+
outputs = self.gpt2_model(input_ids, labels=target_ids)
|
304 |
+
log_likelihood = outputs[0] * trg_len
|
305 |
+
lls.append(log_likelihood)
|
306 |
+
ppl = torch.exp(torch.stack(lls).sum() / end_loc)
|
307 |
+
return ppl.item()
|
308 |
+
|
309 |
+
def evaluate_diversity(self, texts):
|
310 |
+
all_tokens = [tok for text in texts for tok in text.split()]
|
311 |
+
unique_bigrams = set(ngrams(all_tokens, 2))
|
312 |
+
diversity_score = len(unique_bigrams) / len(all_tokens) if all_tokens else 0
|
313 |
+
return diversity_score
|
314 |
+
|
315 |
+
def evaluate_racial_bias(self, text):
|
316 |
+
results = self.bias_pipeline([text], candidate_labels=["hate speech", "not hate speech"])
|
317 |
+
bias_score = results[0]['scores'][results[0]['labels'].index('hate speech')]
|
318 |
+
return bias_score
|
319 |
+
|
320 |
+
def evaluate_all(self, question, response, reference):
|
321 |
+
candidates = [response]
|
322 |
+
references = [reference]
|
323 |
+
bleu, rouge1 = self.evaluate_bleu_rouge(candidates, references)
|
324 |
+
bert_p, bert_r, bert_f1 = self.evaluate_bert_score(candidates, references)
|
325 |
+
perplexity = self.evaluate_perplexity(response)
|
326 |
+
diversity = self.evaluate_diversity(candidates)
|
327 |
+
racial_bias = self.evaluate_racial_bias(response)
|
328 |
+
return {
|
329 |
+
"BLEU": bleu,
|
330 |
+
"ROUGE-1": rouge1,
|
331 |
+
"BERT P": bert_p,
|
332 |
+
"BERT R": bert_r,
|
333 |
+
"BERT F1": bert_f1,
|
334 |
+
"Perplexity": perplexity,
|
335 |
+
"Diversity": diversity,
|
336 |
+
"Racial Bias": racial_bias
|
337 |
+
}
|
338 |
+
|
339 |
+
###################################
|
340 |
+
|
341 |
+
evaluator = RAGEvaluator()
|
342 |
+
|
343 |
+
|
344 |
+
#################################
|
345 |
+
|
346 |
+
def display_metrics(metrics):
|
347 |
+
result = ""
|
348 |
+
for k, v in metrics.items():
|
349 |
+
if k == 'BLEU':
|
350 |
+
result += f"BLEU measures the overlap between the generated output and reference text based on n-grams. Higher scores indicate better match. Score obtained: {v}\n\n"
|
351 |
+
elif k == "ROUGE-1":
|
352 |
+
result += f"ROUGE-1 measures the overlap of unigrams between the generated output and reference text. Higher scores indicate better match. Score obtained: {v}\n\n"
|
353 |
+
elif k == 'BERT P':
|
354 |
+
result += "BERTScore evaluates the semantic similarity between the generated output and reference text using BERT embeddings.\n\n"
|
355 |
+
result += f"**BERT Precision**: {metrics['BERT P']}\n"
|
356 |
+
result += f"**BERT Recall**: {metrics['BERT R']}\n"
|
357 |
+
result += f"**BERT F1 Score**: {metrics['BERT F1']}\n\n"
|
358 |
+
elif k == 'Perplexity':
|
359 |
+
result += f"Perplexity measures how well a language model predicts the text. Lower values indicate better fluency and coherence. Score obtained: {v}\n\n"
|
360 |
+
elif k == 'Diversity':
|
361 |
+
result += f"Diversity measures the uniqueness of bigrams in the generated output. Higher values indicate more diverse and varied output. Score obtained: {v}\n\n"
|
362 |
+
elif k == 'Racial Bias':
|
363 |
+
result += f"Racial Bias score indicates the presence of biased language in the generated output. Higher scores indicate more bias. Score obtained: {v}\n\n"
|
364 |
+
return result
|
365 |
+
|
366 |
+
def conversation(qa_chain, message, history, evaluator):
|
367 |
formatted_chat_history = format_chat_history(message, history)
|
368 |
+
question_by_user = message
|
369 |
+
|
|
|
370 |
response = qa_chain({"question": message, "chat_history": formatted_chat_history})
|
371 |
response_answer = response["answer"]
|
372 |
+
answer_of_question = response["answer"]
|
373 |
if response_answer.find("Helpful Answer:") != -1:
|
374 |
response_answer = response_answer.split("Helpful Answer:")[-1]
|
375 |
response_sources = response["source_documents"]
|
376 |
+
context = " ".join([d.page_content for d in response_sources])
|
377 |
+
|
378 |
response_source1 = response_sources[0].page_content.strip()
|
379 |
response_source2 = response_sources[1].page_content.strip()
|
380 |
response_source3 = response_sources[2].page_content.strip()
|
381 |
+
|
382 |
response_source1_page = response_sources[0].metadata["page"] + 1
|
383 |
response_source2_page = response_sources[1].metadata["page"] + 1
|
384 |
response_source3_page = response_sources[2].metadata["page"] + 1
|
385 |
+
|
|
|
|
|
|
|
386 |
new_history = history + [(message, response_answer)]
|
387 |
+
|
388 |
+
# Evaluate the metrics
|
389 |
+
metrics = evaluator.evaluate_all(question_by_user, answer_of_question, context)
|
390 |
+
evaluation_metrics = display_metrics(metrics)
|
391 |
+
|
392 |
+
return (qa_chain, gr.update(value=""), new_history, response_source1, response_source1_page,
|
393 |
+
response_source2, response_source2_page, response_source3, response_source3_page,
|
394 |
+
question_by_user, context, answer_of_question, evaluation_metrics)
|
395 |
|
396 |
|
397 |
def upload_file(file_obj):
|
|
|
404 |
return list_file_path
|
405 |
|
406 |
|
407 |
+
# Function to display metrics
|
408 |
+
def display_metrics(metrics):
|
409 |
+
result = ""
|
410 |
+
for k, v in metrics.items():
|
411 |
+
if k == 'BLEU':
|
412 |
+
result += f"BLEU measures the overlap between the generated output and reference text based on n-grams. Higher scores indicate better match. Score obtained: {v}\n\n"
|
413 |
+
elif k == "ROUGE-1":
|
414 |
+
result += f"ROUGE-1 measures the overlap of unigrams between the generated output and reference text. Higher scores indicate better match. Score obtained: {v}\n\n"
|
415 |
+
elif k == 'BERT P':
|
416 |
+
result += "BERTScore evaluates the semantic similarity between the generated output and reference text using BERT embeddings.\n\n"
|
417 |
+
result += f"**BERT Precision**: {metrics['BERT P']}\n"
|
418 |
+
result += f"**BERT Recall**: {metrics['BERT R']}\n"
|
419 |
+
result += f"**BERT F1 Score**: {metrics['BERT F1']}\n\n"
|
420 |
+
elif k == 'Perplexity':
|
421 |
+
result += f"Perplexity measures how well a language model predicts the text. Lower values indicate better fluency and coherence. Score obtained: {v}\n\n"
|
422 |
+
elif k == 'Diversity':
|
423 |
+
result += f"Diversity measures the uniqueness of bigrams in the generated output. Higher values indicate more diverse and varied output. Score obtained: {v}\n\n"
|
424 |
+
elif k == 'Racial Bias':
|
425 |
+
result += f"Racial Bias score indicates the presence of biased language in the generated output. Higher scores indicate more bias. Score obtained: {v}\n\n"
|
426 |
+
return result
|
427 |
+
|
428 |
+
|
429 |
+
|
430 |
+
###################################
|
431 |
def demo():
|
432 |
with gr.Blocks(theme="base") as demo:
|
433 |
vector_db = gr.State()
|
|
|
495 |
with gr.Row():
|
496 |
submit_btn = gr.Button("Submit message")
|
497 |
clear_btn = gr.ClearButton([msg, chatbot], value="Clear conversation")
|
498 |
+
with gr.Tab("Metrics"):
|
499 |
+
metrics_output = gr.Textbox(lines=10, label="Evaluation Metrics")
|
500 |
+
|
501 |
+
|
502 |
+
|
503 |
+
with gr.Tab("Metrics"):
|
504 |
+
metrics_output = gr.Textbox(lines=10, label="Evaluation Metrics")
|
505 |
+
|
506 |
+
|
507 |
+
|
508 |
+
|
509 |
+
|
510 |
+
|
511 |
+
|
512 |
+
|
513 |
|
514 |
# Preprocessing events
|
515 |
#upload_btn.upload(upload_file, inputs=[upload_btn], outputs=[document])
|
|
|
524 |
queue=False)
|
525 |
|
526 |
# Chatbot events
|
527 |
+
msg.submit(interact, inputs=[gr.State(), msg, history], outputs=[
|
528 |
+
gr.State(), chatbot, history, response_source1, response_source1_page,
|
529 |
+
response_source2, response_source2_page, response_source3, response_source3_page,
|
530 |
+
None, None, None, metrics_output
|
531 |
+
])
|
532 |
+
|
533 |
+
|
534 |
submit_btn.click(conversation, \
|
535 |
inputs=[qa_chain, msg, chatbot], \
|
536 |
outputs=[qa_chain, msg, chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page], \
|
|
|
539 |
inputs=None, \
|
540 |
outputs=[chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page], \
|
541 |
queue=False)
|
542 |
+
|
543 |
+
|
544 |
+
|
545 |
+
|
546 |
+
|
547 |
demo.queue().launch(debug=True)
|
548 |
|
549 |
|