Spaces:
Running
Running
Create utils.py
Browse files
utils.py
ADDED
@@ -0,0 +1,237 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import json
|
2 |
+
import os
|
3 |
+
from datetime import datetime
|
4 |
+
|
5 |
+
import gradio as gr
|
6 |
+
import pandas as pd
|
7 |
+
|
8 |
+
from envs import API, EVAL_REQUESTS_PATH, TOKEN, QUEUE_REPO
|
9 |
+
|
10 |
+
|
11 |
+
|
12 |
+
custom_css = """
|
13 |
+
@import url('https://fonts.googleapis.com/css2?family=Vazirmatn&display=swap');
|
14 |
+
body, .gradio-container, .gr-button, .gr-input, .gr-slider, .gr-dropdown, .gr-markdown {
|
15 |
+
font-family: 'Vazirmatn', sans-serif !important;
|
16 |
+
}
|
17 |
+
.markdown-text {
|
18 |
+
font-size: 16px !important;
|
19 |
+
}
|
20 |
+
#models-to-add-text {
|
21 |
+
font-size: 18px !important;
|
22 |
+
}
|
23 |
+
#citation-button span {
|
24 |
+
font-size: 16px !important;
|
25 |
+
}
|
26 |
+
#citation-button textarea {
|
27 |
+
font-size: 16px !important;
|
28 |
+
}
|
29 |
+
#citation-button > label > button {
|
30 |
+
margin: 6px;
|
31 |
+
transform: scale(1.3);
|
32 |
+
}
|
33 |
+
#leaderboard-table {
|
34 |
+
margin-top: 15px;
|
35 |
+
text-align: center;
|
36 |
+
}
|
37 |
+
#leaderboard-table,
|
38 |
+
#leaderboard-table th,
|
39 |
+
#leaderboard-table td {
|
40 |
+
text-align: center;
|
41 |
+
vertical-align: middle;
|
42 |
+
border-collapse: collapse;
|
43 |
+
}
|
44 |
+
#leaderboard-table td:first-child,
|
45 |
+
#leaderboard-table th:first-child {
|
46 |
+
text-align: left;
|
47 |
+
max-width: 600px;
|
48 |
+
}
|
49 |
+
table > thead {
|
50 |
+
white-space: normal;
|
51 |
+
}
|
52 |
+
table > thead th,
|
53 |
+
table > tbody td {
|
54 |
+
text-align: center;
|
55 |
+
vertical-align: middle;
|
56 |
+
}
|
57 |
+
table > tbody td:first-child {
|
58 |
+
text-align: left;
|
59 |
+
max-width: 600px;
|
60 |
+
}
|
61 |
+
#leaderboard-table-lite {
|
62 |
+
margin-top: 15px;
|
63 |
+
}
|
64 |
+
#search-bar-table-box > div:first-child {
|
65 |
+
background: none;
|
66 |
+
border: none;
|
67 |
+
}
|
68 |
+
#search-bar {
|
69 |
+
padding: 0px;
|
70 |
+
}
|
71 |
+
.tab-buttons button {
|
72 |
+
font-size: 20px;
|
73 |
+
}
|
74 |
+
#scale-logo {
|
75 |
+
border-style: none !important;
|
76 |
+
box-shadow: none;
|
77 |
+
display: block;
|
78 |
+
margin-left: auto;
|
79 |
+
margin-right: auto;
|
80 |
+
max-width: 600px;
|
81 |
+
}
|
82 |
+
#scale-logo .download {
|
83 |
+
display: none;
|
84 |
+
}
|
85 |
+
#filter_type {
|
86 |
+
border: 0;
|
87 |
+
padding-left: 0;
|
88 |
+
padding-top: 0;
|
89 |
+
}
|
90 |
+
#filter_type label {
|
91 |
+
display: flex;
|
92 |
+
}
|
93 |
+
#filter_type label > span {
|
94 |
+
margin-top: var(--spacing-lg);
|
95 |
+
margin-right: 0.5em;
|
96 |
+
}
|
97 |
+
#filter_type label > .wrap {
|
98 |
+
width: 103px;
|
99 |
+
}
|
100 |
+
#filter_type label > .wrap .wrap-inner {
|
101 |
+
padding: 2px;
|
102 |
+
}
|
103 |
+
#filter_type label > .wrap .wrap-inner input {
|
104 |
+
width: 1px;
|
105 |
+
}
|
106 |
+
#filter-columns-type {
|
107 |
+
border: 0;
|
108 |
+
padding: 0.5;
|
109 |
+
}
|
110 |
+
#filter-columns-size {
|
111 |
+
border: 0;
|
112 |
+
padding: 0.5;
|
113 |
+
}
|
114 |
+
#box-filter > .form {
|
115 |
+
border: 0;
|
116 |
+
}
|
117 |
+
"""
|
118 |
+
|
119 |
+
|
120 |
+
ABOUT_TEXT = f"""
|
121 |
+
# Persian Text Embedding Benchmark (v1.0.0)
|
122 |
+
"""
|
123 |
+
|
124 |
+
|
125 |
+
SUBMIT_TEXT = """## Submitting a Model for Evaluation
|
126 |
+
|
127 |
+
> To submit your open-source model for evaluation, follow these steps:
|
128 |
+
>
|
129 |
+
> 1. **Ensure your model is on Hugging Face**: Your model must be publicly available on [Hugging Face](https://huggingface.co/).
|
130 |
+
>
|
131 |
+
> 2. **Submit Request**: Send a request with your model's Hugging Face identifier.
|
132 |
+
>
|
133 |
+
> 3. **Manual Queue**: Please note that the evaluation process is currently handled manually. Submissions will be queued and processed as soon as possible.
|
134 |
+
>
|
135 |
+
> 4. **Results**: Once the evaluation is complete, your model’s results will be updated on the leaderboard.
|
136 |
+
>
|
137 |
+
> We appreciate your patience and contributions to the Persian LM ecosystem!
|
138 |
+
"""
|
139 |
+
|
140 |
+
|
141 |
+
PART_LOGO = """
|
142 |
+
<img src="https://avatars.githubusercontent.com/u/39557177?v=4" style="width:30%;display:block;margin-left:auto;margin-right:auto">
|
143 |
+
<h1 style="font-size: 28px; margin-bottom: 2px;">Part DP AI</h1>
|
144 |
+
"""
|
145 |
+
|
146 |
+
|
147 |
+
def load_jsonl(input_file):
|
148 |
+
data = []
|
149 |
+
with open(input_file, 'r') as f:
|
150 |
+
for line in f:
|
151 |
+
data.append(json.loads(line))
|
152 |
+
return data
|
153 |
+
|
154 |
+
|
155 |
+
def jsonl_to_dataframe(input_file):
|
156 |
+
data = load_jsonl(input_file)
|
157 |
+
return pd.DataFrame(data)
|
158 |
+
|
159 |
+
|
160 |
+
def sort_dataframe_by_column(df, column_name):
|
161 |
+
if column_name not in df.columns:
|
162 |
+
raise ValueError(f"Column '{column_name}' does not exist in the DataFrame.")
|
163 |
+
return df.sort_values(by=column_name, ascending=False).reset_index(drop=True)
|
164 |
+
|
165 |
+
|
166 |
+
def add_average_column_to_df(df,columns_to_average, index=3, average_column_name="Average Accuracy"):
|
167 |
+
average_column = df[columns_to_average].mean(axis=1)
|
168 |
+
df.insert(index, average_column_name, average_column)
|
169 |
+
return df
|
170 |
+
|
171 |
+
|
172 |
+
def model_hyperlink(link, model_name):
|
173 |
+
return f'<a target="_blank" href="{link}" style="color: var(--link-text-color); text-decoration: underline;text-decoration-style: dotted;">{model_name}</a>'
|
174 |
+
|
175 |
+
|
176 |
+
def make_clickable_model(model_name):
|
177 |
+
link = f"https://huggingface.co/{model_name}"
|
178 |
+
return model_hyperlink(link, model_name)
|
179 |
+
|
180 |
+
|
181 |
+
def center_align_markdown(text):
|
182 |
+
return f'<div align="center">{text}</div>'
|
183 |
+
|
184 |
+
|
185 |
+
def apply_markdown_format_for_columns(df, model_column_name):
|
186 |
+
columns = list(df.columns)
|
187 |
+
df[model_column_name] = df[model_column_name].apply(make_clickable_model)
|
188 |
+
# for column in columns:
|
189 |
+
# if column != model_column_name:
|
190 |
+
# df[column] = df[column].apply(center_align_markdown)
|
191 |
+
return df
|
192 |
+
|
193 |
+
|
194 |
+
def submit(model_name, model_id, contact_email):
|
195 |
+
if model_name == "" or model_id == "" or contact_email == "":
|
196 |
+
gr.Info("Please fill all the fields")
|
197 |
+
return
|
198 |
+
|
199 |
+
|
200 |
+
try:
|
201 |
+
user_name = ""
|
202 |
+
if "/" in model_id:
|
203 |
+
user_name = model_id.split("/")[0]
|
204 |
+
model_path = model_id.split("/")[1]
|
205 |
+
|
206 |
+
eval_entry = {
|
207 |
+
"model_name": model_name,
|
208 |
+
"model_id": model_id,
|
209 |
+
"contact_email": contact_email,
|
210 |
+
}
|
211 |
+
|
212 |
+
# Get the current timestamp to add to the filename
|
213 |
+
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
|
214 |
+
|
215 |
+
OUT_DIR = f"{EVAL_REQUESTS_PATH}/{user_name}"
|
216 |
+
os.makedirs(OUT_DIR, exist_ok=True)
|
217 |
+
|
218 |
+
# Add the timestamp to the filename
|
219 |
+
out_path = f"{OUT_DIR}/{user_name}_{model_path}_{timestamp}.json"
|
220 |
+
|
221 |
+
with open(out_path, "w") as f:
|
222 |
+
f.write(json.dumps(eval_entry))
|
223 |
+
|
224 |
+
print("Uploading eval file")
|
225 |
+
API.upload_file(
|
226 |
+
path_or_fileobj=out_path,
|
227 |
+
path_in_repo=out_path.split("eval-queue/")[1],
|
228 |
+
repo_id=QUEUE_REPO,
|
229 |
+
repo_type="dataset",
|
230 |
+
commit_message=f"Add {model_name} to eval queue",
|
231 |
+
)
|
232 |
+
|
233 |
+
gr.Info("Successfully submitted", duration=10)
|
234 |
+
# Remove the local file
|
235 |
+
os.remove(out_path)
|
236 |
+
except Exception as e:
|
237 |
+
gr.Error(f"Error submitting the model: {e}")
|