Spaces:
Sleeping
Sleeping
| import gradio as gr | |
| from transformers import MBartForConditionalGeneration, MBart50TokenizerFast | |
| import torch | |
| class MBartTranslator: | |
| """MBartTranslator class provides a simple interface for translating text using the MBart language model. | |
| The class can translate between 50 languages and is based on the "facebook/mbart-large-50-many-to-many-mmt" | |
| pre-trained MBart model. However, it is possible to use a different MBart model by specifying its name. | |
| Attributes: | |
| model (MBartForConditionalGeneration): The MBart language model. | |
| tokenizer (MBart50TokenizerFast): The MBart tokenizer. | |
| """ | |
| def __init__(self, model_name="facebook/mbart-large-50-many-to-many-mmt", src_lang=None, tgt_lang=None): | |
| self.supported_languages = [ | |
| "ar_AR", | |
| "de_DE", | |
| "en_XX", | |
| "es_XX", | |
| "fr_XX", | |
| "hi_IN", | |
| "it_IT", | |
| "ja_XX", | |
| "ko_XX", | |
| "pt_XX", | |
| "ru_XX", | |
| "zh_XX", | |
| "af_ZA", | |
| "bn_BD", | |
| "bs_XX", | |
| "ca_XX", | |
| "cs_CZ", | |
| "da_XX", | |
| "el_GR", | |
| "et_EE", | |
| "fa_IR", | |
| "fi_FI", | |
| "gu_IN", | |
| "he_IL", | |
| "hi_XX", | |
| "hr_HR", | |
| "hu_HU", | |
| "id_ID", | |
| "is_IS", | |
| "ja_XX", | |
| "jv_XX", | |
| "ka_GE", | |
| "kk_XX", | |
| "km_KH", | |
| "kn_IN", | |
| "ko_KR", | |
| "lo_LA", | |
| "lt_LT", | |
| "lv_LV", | |
| "mk_MK", | |
| "ml_IN", | |
| "mr_IN", | |
| "ms_MY", | |
| "ne_NP", | |
| "nl_XX", | |
| "no_XX", | |
| "pl_XX", | |
| "ro_RO", | |
| "si_LK", | |
| "sk_SK", | |
| "sl_SI", | |
| "sq_AL", | |
| "sr_XX", | |
| "sv_XX", | |
| "sw_TZ", | |
| "ta_IN", | |
| "te_IN", | |
| "th_TH", | |
| "tl_PH", | |
| "tr_TR", | |
| "uk_UA", | |
| "ur_PK", | |
| "vi_VN", | |
| "war_PH", | |
| "yue_XX", | |
| "zh_CN", | |
| "zh_TW", | |
| ] | |
| print("Building translator") | |
| print("Loading generator (this may take few minutes the first time as I need to download the model)") | |
| self.model = MBartForConditionalGeneration.from_pretrained(model_name) | |
| print("Loading tokenizer") | |
| self.tokenizer = MBart50TokenizerFast.from_pretrained(model_name, src_lang=src_lang, tgt_lang=tgt_lang) | |
| print("Translator is ready") | |
| def translate(self, text: str, input_language: str, output_language: str) -> str: | |
| """Translate the given text from the input language to the output language. | |
| Args: | |
| text (str): The text to translate. | |
| input_language (str): The input language code (e.g. "hi_IN" for Hindi). | |
| output_language (str): The output language code (e.g. "en_US" for English). | |
| Returns: | |
| str: The translated text. | |
| """ | |
| if input_language not in self.supported_languages: | |
| raise ValueError(f"Input language not supported. Supported languages: {self.supported_languages}") | |
| if output_language not in self.supported_languages: | |
| raise ValueError(f"Output language not supported. Supported languages: {self.supported_languages}") | |
| self.tokenizer.src_lang = input_language | |
| encoded_input = self.tokenizer(text, return_tensors="pt") | |
| generated_tokens = self.model.generate( | |
| **encoded_input, forced_bos_token_id=self.tokenizer.lang_code_to_id[output_language] | |
| ) | |
| translated_text = self.tokenizer.batch_decode(generated_tokens, skip_special_tokens=False) | |
| return translated_text[0] | |
| def translate_text(source_lang, target_lang, text): | |
| translator = MBartTranslator() | |
| return translator.translate(text, source_lang, target_lang) | |
| translation_interface = gr.Interface(fn=translate_text, | |
| inputs=[gr.inputs.Dropdown(choices=["en_XX", "es_XX", "fr_XX", "zh_XX", "hi_IN"], label="Source Language"), | |
| gr.inputs.Dropdown(choices=["en_XX", "es_XX", "fr_XX", "zh_XX", "hi_IN"], label="Target Language"), | |
| gr.inputs.Textbox(label="Text to translate")], | |
| outputs=gr.outputs.Textbox(label="Translated text")) | |
| translation_interface.launch() | |