Spaces:
Runtime error
Runtime error
updated (removed realtime webcam
Browse files- .vscode/settings.json +3 -0
- app.py +0 -66
.vscode/settings.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"ros.distro": "noetic"
|
3 |
+
}
|
app.py
CHANGED
@@ -72,17 +72,6 @@ class UI():
|
|
72 |
self.distance_type = gr.State("cosine")
|
73 |
gr.Markdown("## FaceAnalyzer face recognition test")
|
74 |
with gr.Tabs():
|
75 |
-
with gr.TabItem('Realtime Recognize'):
|
76 |
-
with gr.Blocks():
|
77 |
-
with gr.Row():
|
78 |
-
with gr.Column():
|
79 |
-
self.rt_webcam = gr.Image(label="Input Image", source="webcam", streaming=True)
|
80 |
-
self.start_streaming = gr.Button("Start webcam")
|
81 |
-
self.start_streaming.click(self.start_webcam, [], [self.start_streaming])
|
82 |
-
|
83 |
-
with gr.Column():
|
84 |
-
self.rt_rec_img = gr.Image(label="Output Image")
|
85 |
-
self.rt_webcam.change(self.process_webcam, inputs=self.rt_webcam, outputs=self.rt_rec_img, show_progress=False)
|
86 |
with gr.TabItem('Image Recognize'):
|
87 |
with gr.Blocks():
|
88 |
with gr.Row():
|
@@ -91,18 +80,6 @@ class UI():
|
|
91 |
with gr.Column():
|
92 |
self.rt_rec_img = gr.Image(label="Output Image")
|
93 |
self.rt_inp_img.change(self.process_image, inputs=self.rt_inp_img, outputs=self.rt_rec_img, show_progress=True)
|
94 |
-
with gr.TabItem('Add face from webcam'):
|
95 |
-
with gr.Blocks():
|
96 |
-
with gr.Row():
|
97 |
-
with gr.Column():
|
98 |
-
self.img = gr.Image(label="Input Image", source="webcam", streaming=True)
|
99 |
-
self.txtFace_name = gr.Textbox(label="face_name")
|
100 |
-
self.status = gr.Label(label="Status")
|
101 |
-
self.txtFace_name.change(self.set_face_name, inputs=self.txtFace_name, outputs=self.status, show_progress=False)
|
102 |
-
self.img.change(self.record_from_webcam, inputs=self.img, outputs=self.status, show_progress=False)
|
103 |
-
with gr.Column():
|
104 |
-
self.btn_start = gr.Button("Start Recording face")
|
105 |
-
self.btn_start.click(self.start_stop)
|
106 |
with gr.TabItem('Add face from files'):
|
107 |
with gr.Blocks():
|
108 |
with gr.Row():
|
@@ -280,49 +257,6 @@ class UI():
|
|
280 |
pickle.dump({"mean":embeddings_cloud_mean, "inv_cov":embeddings_cloud_inv_cov},f)
|
281 |
print(f"Saved {name}")
|
282 |
|
283 |
-
def record_from_webcam(self, image):
|
284 |
-
if self.face_name is None or self.face_name=="":
|
285 |
-
self.embeddings_cloud=[]
|
286 |
-
self.is_recording=False
|
287 |
-
return "Please input a face name"
|
288 |
-
|
289 |
-
if self.is_recording and image is not None:
|
290 |
-
if self.i < self.nb_images:
|
291 |
-
fa.image_size=(640, 480, 3)
|
292 |
-
|
293 |
-
# Process the image to extract faces and draw the masks on the face in the image
|
294 |
-
fa.process(image)
|
295 |
-
if fa.nb_faces>0:
|
296 |
-
try:
|
297 |
-
face = fa.faces[0]
|
298 |
-
vertices = face.get_face_outer_vertices()
|
299 |
-
image = face.getFaceBox(image, vertices, margins=(40,40,40,40))
|
300 |
-
embedding = DeepFace.represent(image, enforce_detection=False)[0]["embedding"]
|
301 |
-
self.embeddings_cloud.append(embedding)
|
302 |
-
self.i+=1
|
303 |
-
except Exception as ex:
|
304 |
-
print(ex)
|
305 |
-
return f"Processing frame {self.i}/{self.nb_images}..."
|
306 |
-
else:
|
307 |
-
# Now let's find out where the face lives inside the latent space (128 dimensions space)
|
308 |
-
|
309 |
-
embeddings_cloud = np.array(self.embeddings_cloud)
|
310 |
-
embeddings_cloud_mean = embeddings_cloud.mean(axis=0)
|
311 |
-
embeddings_cloud_inv_cov = embeddings_cloud.std(axis=0)
|
312 |
-
# Now we save it.
|
313 |
-
# create a dialog box to ask for the subject name
|
314 |
-
name = self.face_name
|
315 |
-
with open(str(self.faces_path/f"{name}.pkl"),"wb") as f:
|
316 |
-
pickle.dump({"mean":embeddings_cloud_mean, "inv_cov":embeddings_cloud_inv_cov},f)
|
317 |
-
print(f"Saved {name} embeddings")
|
318 |
-
self.i=0
|
319 |
-
self.embeddings_cloud=[]
|
320 |
-
self.is_recording=False
|
321 |
-
self.upgrade_faces()
|
322 |
-
|
323 |
-
return f"Saved {name} embeddings"
|
324 |
-
else:
|
325 |
-
return "Waiting"
|
326 |
|
327 |
def record_from_files(self, images, face_name):
|
328 |
if face_name is None or face_name=="":
|
|
|
72 |
self.distance_type = gr.State("cosine")
|
73 |
gr.Markdown("## FaceAnalyzer face recognition test")
|
74 |
with gr.Tabs():
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
75 |
with gr.TabItem('Image Recognize'):
|
76 |
with gr.Blocks():
|
77 |
with gr.Row():
|
|
|
80 |
with gr.Column():
|
81 |
self.rt_rec_img = gr.Image(label="Output Image")
|
82 |
self.rt_inp_img.change(self.process_image, inputs=self.rt_inp_img, outputs=self.rt_rec_img, show_progress=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
83 |
with gr.TabItem('Add face from files'):
|
84 |
with gr.Blocks():
|
85 |
with gr.Row():
|
|
|
257 |
pickle.dump({"mean":embeddings_cloud_mean, "inv_cov":embeddings_cloud_inv_cov},f)
|
258 |
print(f"Saved {name}")
|
259 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
260 |
|
261 |
def record_from_files(self, images, face_name):
|
262 |
if face_name is None or face_name=="":
|