Parimala13Sri's picture
Create app.py
9473b2d verified
import streamlit as st
from PIL import Image
import requests
from io import BytesIO
from transformers import ViltProcessor, ViltForQuestionAnswering
# Set page layout to wide
st.set_page_config(layout="wide")
processor = ViltProcessor.from_pretrained("dandelin/vilt-b32-finetuned-vqa")
model = ViltForQuestionAnswering.from_pretrained("dandelin/vilt-b32-finetuned-vqa")
def get_answer(image, text):
try:
# Load and process the image
img = Image.open(BytesIO(image)).convert("RGB")
# Prepare inputs
encoding = processor(img, text, return_tensors="pt")
# Forward pass
outputs = model(**encoding)
logits = outputs.logits
idx = logits.argmax(-1).item()
answer = model.config.id2label[idx]
return answer
except Exception as e:
return str(e)
# Set up the Streamlit app
st.title("VisualSense QA")
st.write("Upload an image and enter a question to get an answer.")
# Create columns for image upload and input fields
col1, col2 = st.columns(2)
# Image upload
with col1:
uploaded_file = st.file_uploader("Upload Image", type=["jpg", "jpeg", "png"])
if uploaded_file is not None:
st.image(uploaded_file, use_column_width=True)
# Question input
with col2:
question = st.text_input("Question")
# Process the image and question when both are provided
if uploaded_file and question is not None:
if st.button("Ask Question"):
image = Image.open(uploaded_file)
image_byte_array = BytesIO()
image.save(image_byte_array, format='JPEG')
image_bytes = image_byte_array.getvalue()
# Get the answer
answer = get_answer(image_bytes, question)
# Display the answer
st.success("Answer: " + answer)