Spaces:
Configuration error
Configuration error
Quality-Control-Inspector
/
tlt
/datasets
/image_classification
/tfds_image_classification_dataset.py
#!/usr/bin/env python | |
# -*- coding: utf-8 -*- | |
# | |
# Copyright (c) 2022 Intel Corporation | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
# | |
# SPDX-License-Identifier: Apache-2.0 | |
# | |
import tensorflow as tf | |
from tlt.datasets.tf_dataset import TFDataset | |
from tlt.datasets.image_classification.image_classification_dataset import ImageClassificationDataset | |
from downloader.datasets import DataDownloader | |
class TFDSImageClassificationDataset(ImageClassificationDataset, TFDataset): | |
""" | |
An image classification dataset from the TensorFlow datasets catalog | |
""" | |
def __init__(self, dataset_dir, dataset_name, split=["train"], | |
as_supervised=True, shuffle_files=True, seed=None, **kwargs): | |
""" | |
Class constructor | |
""" | |
if not isinstance(split, list): | |
raise ValueError("Value of split argument must be a list.") | |
ImageClassificationDataset.__init__(self, dataset_dir, dataset_name) | |
self._preprocessed = {} | |
self._seed = seed | |
tf.get_logger().setLevel('ERROR') | |
downloader = DataDownloader(dataset_name, dataset_dir=dataset_dir, catalog='tfds', as_supervised=as_supervised, | |
shuffle_files=shuffle_files, with_info=True) | |
data, self._info = downloader.download(split=split) | |
self._dataset = None | |
self._train_subset = None | |
self._validation_subset = None | |
self._test_subset = None | |
if len(split) == 1: | |
self._validation_type = None # Train & evaluate on the whole dataset | |
self._dataset = data[0] | |
else: | |
self._validation_type = 'defined_split' # Defined by user or TFDS | |
for i, s in enumerate(split): | |
if s == 'train': | |
self._train_subset = data[i] | |
elif s == 'validation': | |
self._validation_subset = data[i] | |
elif s == 'test': | |
self._test_subset = data[i] | |
self._dataset = data[i] if self._dataset is None else self._dataset.concatenate(data[i]) | |
def class_names(self): | |
"""Returns the list of class names""" | |
return self._info.features["label"].names | |
def info(self): | |
"""Returns a dictionary of information about the dataset""" | |
return {'dataset_info': self._info, 'preprocessing_info': self._preprocessed} | |
def dataset(self): | |
""" | |
Returns the framework dataset object (tf.data.Dataset) | |
""" | |
return self._dataset | |
def preprocess(self, image_size, batch_size, add_aug=None, preprocessor=None): | |
""" | |
Preprocess the dataset to convert to float32, resize, and batch the images | |
Args: | |
image_size (int): desired square image size | |
batch_size (int): desired batch size | |
add_aug (None or list[str]): Choice of augmentations (RandomHorizontalandVerticalFlip, | |
RandomHorizontalFlip, RandomVerticalFlip, RandomZoom, RandomRotation) to | |
be applied during training | |
preprocessor (None or preprocess_input function from keras.applications): Should be provided when using | |
Keras Applications models, which have model-specific preprocessors; | |
otherwise, use None (the default) to apply generic type conversion and | |
resizing | |
Raises: | |
ValueError: if the dataset is not defined or has already been processed | |
""" | |
if self._preprocessed: | |
raise ValueError("Data has already been preprocessed: {}".format(self._preprocessed)) | |
if not isinstance(batch_size, int) or batch_size < 1: | |
raise ValueError("batch_size should be a positive integer") | |
if not isinstance(image_size, int) or image_size < 1: | |
raise ValueError("image_size should be a positive integer") | |
if not (self._dataset or self._train_subset or self._validation_subset or self._test_subset): | |
raise ValueError("Unable to preprocess, because the dataset hasn't been defined.") | |
if add_aug is not None: | |
aug_dict = { | |
'hvflip': tf.keras.layers.RandomFlip("horizontal_and_vertical", | |
input_shape=(image_size, image_size, 3), seed=self._seed), | |
'hflip': tf.keras.layers.RandomFlip("horizontal", | |
input_shape=(image_size, image_size, 3), seed=self._seed), | |
'vflip': tf.keras.layers.RandomFlip("vertical", | |
input_shape=(image_size, image_size, 3), seed=self._seed), | |
'rotate': tf.keras.layers.RandomRotation(0.5, seed=self._seed), | |
'zoom': tf.keras.layers.RandomZoom(0.3, seed=self._seed)} | |
aug_list = ['hvflip', 'hflip', 'vflip', 'rotate', 'zoom'] | |
data_augmentation = tf.keras.Sequential() | |
for option in add_aug: | |
if option not in aug_list: | |
raise ValueError("Unsupported augmentation for TensorFlow:{}. \ | |
Supported augmentations are {}".format(option, aug_list)) | |
data_augmentation.add(aug_dict[option]) | |
def preprocess_image(image, label): | |
if preprocessor is None: | |
image = tf.image.convert_image_dtype(image, tf.float32) | |
image = tf.image.resize_with_pad(image, image_size, image_size) | |
return (image, label) | |
# Get the non-None splits | |
split_list = ['_dataset', '_train_subset', '_validation_subset', '_test_subset'] | |
subsets = [s for s in split_list if getattr(self, s, None)] | |
for subset in subsets: | |
setattr(self, subset, getattr(self, subset).map(preprocess_image)) | |
if preprocessor: | |
setattr(self, subset, getattr(self, subset).map(lambda x, y: (preprocessor(x), y))) | |
setattr(self, subset, getattr(self, subset).cache()) | |
setattr(self, subset, getattr(self, subset).batch(batch_size)) | |
setattr(self, subset, getattr(self, subset).prefetch(tf.data.AUTOTUNE)) | |
if add_aug is not None and subset in ['_dataset', '_train_subset']: | |
setattr(self, subset, getattr(self, subset).map(lambda x, y: (data_augmentation(x, training=True), y), | |
num_parallel_calls=tf.data.AUTOTUNE)) | |
self._preprocessed = {'image_size': image_size, 'batch_size': batch_size} | |