Spaces:
Runtime error
Runtime error
# -*- coding: utf-8 -*- | |
from langchain.embeddings.openai import OpenAIEmbeddings | |
from langchain.text_splitter import CharacterTextSplitter | |
from langchain.vectorstores import Chroma | |
import openai | |
import time | |
import gradio as gr | |
import os | |
# 输入 API KEY | |
os.environ["OPENAI_API_KEY"] = "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" | |
#读取PDF文件 | |
def doc_read_pdf(file): | |
# 读取PDF | |
reader = PdfReader(file) | |
# reader = PdfReader('.\data\資治通鑑全集_部分1.pdf') | |
raw_text = '' | |
for i, page in enumerate(reader.pages): | |
text = page.extract_text() | |
if text: | |
raw_text += text | |
return raw_text | |
# 读取txt文件 | |
def doc_read_txt(file): | |
with open(file, encoding='utf-8') as f: | |
text = f.read() | |
return text | |
#补全 | |
#从开始到调用openai模型前的一些步骤,主要是文件读取和拆解 | |
def doc_split(file): | |
#分解文本 | |
text_splitter = CharacterTextSplitter( | |
separator = "\n", | |
chunk_size = 1200, | |
chunk_overlap = 100, | |
length_function = len, | |
) | |
# texts = text_splitter.split_text(raw_text) | |
texts = text_splitter.split_text(doc_read_txt(file)) | |
return texts | |
#将文本向量化 | |
def doc_vectorize(texts): | |
embeddings = OpenAIEmbeddings() | |
docsearch = Chroma.from_texts(texts, embeddings, metadatas=[{"source": str(i)} for i in range(len(texts))]) | |
return docsearch | |
#文本被拆解储存在数组texts中 | |
# raw_file = | |
texts = doc_split("./资治通鉴_1_残缺.txt") | |
docsearch = doc_vectorize((texts)) | |
def openai_reply(word1, word2, word3, temp, file): | |
words = word1 + "*****" + word2 + "*****" + word3 | |
# 文本相似查找,最终结果是一个列表 | |
docs = docsearch.similarity_search(words) | |
reference_1 = docs[0].page_content | |
reference_2 = docs[1].page_content | |
reference = reference_1 + reference_2 | |
print(words) | |
request = "请使用文言文帮我补全[" + words + "]" | |
response = openai.ChatCompletion.create( | |
model="gpt-3.5-turbo", | |
messages=[ | |
{"role": "system", | |
"content": f"""你是一个古汉语与中国历史专家,擅长补全古代文献。在后续的会话中,你需要补全我给你的残缺文本, | |
这些残缺文本用[]包括,并且其中的几段残缺汉字用“*”来代替着,且数量不明。 | |
请你阅读并且理解下文背景资料,并且补全我待会在会话中给出的残缺文本。如果你在背景资料中找不到相关文字,请根据你对于背景资料和我给出的残缺文本的理解, | |
使用《资治通鉴》的文言文风格自行补全残缺文本。请注意,不要改动我提供的残缺文本中非“*”的原文,并且一定要用文言文替代“*”!!! | |
\n背景资料:\n{reference} | |
"""}, | |
{"role": "user", "content": request}, | |
], | |
max_tokens=512, | |
n=1, | |
stop=None, | |
temperature=temp | |
) | |
print(response.choices[0].message['content']) | |
shijian = time.strftime("%Y年%m月%d日%H点%M分",time.localtime()) | |
answer = response.choices[0].message['content'] | |
return answer, reference, shijian | |
# 以下是界面搭建 | |
headline = '碎片化文本复原' | |
description = """请给出至多三条碎片文本,系统将会根据文献数据库尽可能进行理解和匹配,给出猜想。 | |
当然,你也可以上传自己的TXT文件作为数据来源之一。结果仅供参考和启发。""" | |
with gr.Blocks() as demo: | |
gr.Markdown(f'<center><h1>{headline}</h1></center>') | |
gr.Markdown(description) | |
with gr.Row(): | |
with gr.Group(): | |
raw_text_1 = gr.Textbox(label='在此输入碎片文本') | |
raw_text_2 = gr.Textbox(label='在此输入碎片文本') | |
raw_text_3 = gr.Textbox(label='在此输入碎片文本') | |
temp = gr.Slider(minimum=0.0, maximum=2.0, value=0.3, label="无序程度(Temperature)") | |
Title = gr.Textbox(label='在此输入提交的材料的标题(无需加《》)') | |
file = gr.File( | |
label='上传你的本地TXT文件', file_types=['.txt'] | |
) | |
btn = gr.Button(value='提交') | |
btn.style(full_width=True) | |
with gr.Group(): | |
shijian = gr.Label(label='生成时时间') | |
answer = gr.Textbox(label='回答') | |
reference = gr.Textbox(label='参考材料') | |
btn.click( | |
openai_reply, | |
inputs= [raw_text_1, raw_text_2, raw_text_3, temp, file], | |
outputs= [answer, reference, shijian], | |
) | |
demo.launch() | |
# if __name__ == "__main__": | |
# demo.launch(server_port=7860, share=True) | |