Papaflessas's picture
Deploy Signal Generator app
d72801c
import os
import sys
import threading
import json
import logging
from typing import Optional, Dict, Any
from fastapi import FastAPI, HTTPException, Header, BackgroundTasks, Depends
from pydantic import BaseModel
from datetime import datetime
# Add src to path
sys.path.append(os.path.join(os.path.dirname(__file__), ".."))
from src.db.local_database import LocalDatabase, DatabaseEntry, DataType
from run_saturday_analysis import run_saturday_analysis
# Configure logging
# logging.basicConfig(level=logging.INFO) # Replaced by handler below
logger = logging.getLogger(__name__)
# --- Logging Capture Setup ---
import collections
# Create a thread-safe buffer for logs
log_buffer = collections.deque(maxlen=2000)
class LogCaptureHandler(logging.Handler):
def emit(self, record):
try:
log_entry = self.format(record)
# Prepend timestamp if not present
# if not log_entry.startswith("20"):
# log_entry = f"{datetime.now().strftime('%Y-%m-%d %H:%M:%S')} - {log_entry}"
log_buffer.append(log_entry)
except Exception:
self.handleError(record)
# Setup Root Logger to capture ALL logs (including Coordinator)
root_logger = logging.getLogger()
root_logger.setLevel(logging.INFO)
# Avoid adding duplicate handlers if reloaded
if not any(isinstance(h, LogCaptureHandler) for h in root_logger.handlers):
capture_handler = LogCaptureHandler()
formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s')
capture_handler.setFormatter(formatter)
root_logger.addHandler(capture_handler)
# Add console handler too if not present
console_handler = logging.StreamHandler(sys.stdout)
console_handler.setFormatter(formatter)
root_logger.addHandler(console_handler)
app = FastAPI(title="Stock Alchemist Signal Generator")
# --- Models ---
class SignalRequest(BaseModel):
ticker: Optional[str] = None
prompt_override: Optional[str] = None
class SignalResponse(BaseModel):
status: str
message: str
signal_id: Optional[str] = None
# --- Dependencies ---
def verify_api_secret(x_api_secret: str = Header(...)):
"""Verify the API secret header"""
expected_secret = os.getenv("API_SECRET")
if not expected_secret:
# If no secret is set in env, we might want to fail safe or allow default for dev
# For production security, better to fail if not configured.
logger.warning("API_SECRET environment variable not set! Security disabled.")
return # Allow if env var missing (or raise error based on preference)
# raise HTTPException(status_code=500, detail="Server misconfiguration: API_SECRET not set")
if x_api_secret != expected_secret:
raise HTTPException(status_code=403, detail="Invalid API Secret")
# --- Services ---
def generate_signal_logic(ticker: str, prompt_override: Optional[str] = None):
"""
Core logic to generate a signal using Ollama and save to DB.
"""
import requests
logger.info(f"Generating signal for {ticker}...")
# 1. Construct Prompt
# Need to get some data about the ticker to give to the LLM?
# For now, we'll assume the prompt asks the LLM to use its internal knowledge or just generate a generic signal based on the ticker name.
# In a real scenario, we'd fetch news/price data here and feed it.
# Let's try to fetch some basic info from DB if available?
db = LocalDatabase()
# Construct prompt
prompt = prompt_override or f"Analyze the stock {ticker} and provide a trading signal (BUY/SELL/HOLD) with confidence score and reasoning. Format response as JSON."
try:
# 2. Call Ollama
# Using the local Ollama instance
ollama_url = "http://localhost:11434/api/generate"
payload = {
"model": "llama3.1",
"prompt": prompt,
"stream": False,
"format": "json" # Llama 3 supports json mode often
}
response = requests.post(ollama_url, json=payload, timeout=120)
response.raise_for_status()
result = response.json()
llm_output = result.get('response', '')
logger.info(f"Ollama response for {ticker}: {llm_output[:100]}...")
# 3. Parse and Save to DB
# We'll save the raw LLM output as a signal entry
# Try to parse JSON from LLM if possible, otherwise wrap it
try:
signal_data = json.loads(llm_output)
except json.JSONDecodeError:
signal_data = {"raw_output": llm_output}
# Extract signal position if possible
position = signal_data.get('signal', signal_data.get('recommendation', 'HOLD')).upper()
if position not in ['BUY', 'SELL', 'HOLD']:
position = 'HOLD' # Default
# Save using LocalDatabase
# We need to use save_signal or save generic entry?
# save_signal requires specific keys. Let's use save generic entry or try save_signal if we have the keys.
# simpler to just update the 'signals' table logic in LocalDatabase or use db.save() with DataType.CUSTOM?
# The user's signals table has specific columns.
# local_database.py -> save_signal(self, ticker, calendar_event_keys, news_keys, fundamental_key, signal_position, sentiment)
# We'll provide empty lists for keys for now as we didn't link specific events
is_saved = db.save_signal(
ticker=ticker,
calendar_event_keys=[],
news_keys=[],
fundamental_key="generated_by_ollama",
signal_position=position,
sentiment=signal_data
)
if is_saved:
logger.info(f"Signal saved for {ticker}")
else:
logger.error(f"Failed to save signal for {ticker}")
except Exception as e:
logger.error(f"Error generating signal for {ticker}: {e}")
# --- Endpoints ---
@app.post("/generate-signal", response_model=SignalResponse, dependencies=[Depends(verify_api_secret)])
async def generate_signal(request: SignalRequest, background_tasks: BackgroundTasks):
"""
Trigger signal generation.
If ticker is provided, generates for that ticker.
If not, could pick a random one or all? Let's require ticker for now or pick first available.
"""
target_ticker = request.ticker
if not target_ticker:
# Pick a ticker from DB?
try:
db = LocalDatabase()
tickers = db.get_all_available_tickers()
if tickers:
target_ticker = tickers[0] # Just pick the first one for the demo/daily run
else:
raise HTTPException(status_code=404, detail="No tickers available in database")
except Exception as e:
raise HTTPException(status_code=500, detail=f"Database error: {e}")
# Run in background to avoid timeout
background_tasks.add_task(generate_signal_logic, target_ticker, request.prompt_override)
return SignalResponse(
status="accepted",
message=f"Signal generation started for {target_ticker}"
)
@app.post("/saturday-analysis", dependencies=[Depends(verify_api_secret)])
async def trigger_saturday_analysis(background_tasks: BackgroundTasks):
"""
Trigger the saturday analysis script.
"""
background_tasks.add_task(run_saturday_analysis)
return {"status": "accepted", "message": "Saturday analysis started"}
@app.get("/health")
async def health_check():
"""
Simple health check.
Also logs vitals as requested.
"""
# Verify DB connection
db_status = "unknown"
try:
db = LocalDatabase()
if db._create_connection():
db_status = "connected"
else:
db_status = "disconnected"
except Exception as e:
db_status = f"error: {e}"
# Check Ollama
ollama_status = "unknown"
try:
import requests
resp = requests.get("http://localhost:11434/api/tags", timeout=5)
if resp.status_code == 200:
ollama_status = "running"
else:
ollama_status = f"error: {resp.status_code}"
except Exception:
ollama_status = "down"
vitals = {
"status": "ok",
"time": datetime.now().isoformat(),
"database": db_status,
"ollama": ollama_status
}
logger.info(f"Health Check: {vitals}")
return vitals
# --- HTML & Public API ---
from fastapi.responses import HTMLResponse
from fastapi.templating import Jinja2Templates
from fastapi.staticfiles import StaticFiles
from fastapi import Request
# Setup templates
templates = Jinja2Templates(directory="src/templates")
# --- Coordinator Startup ---
@app.on_event("startup")
async def startup_event():
"""Start the Coordinator (News Scraper + Scheduler) in background"""
import threading
import sys
from pathlib import Path
# Ensure src is in path for coordinator imports
try:
from src.orchestrator.coordinator import Coordinator
logger.info("Initializing Coordinator...")
coordinator = Coordinator()
# Start coordinator in a separate thread because it blocks
coord_thread = threading.Thread(target=coordinator.start, daemon=True)
coord_thread.start()
logger.info("✅ Coordinator started in background thread")
except Exception as e:
logger.error(f"❌ Failed to start Coordinator: {e}")
# ... existing code ...
@app.get("/api/signals")
async def get_signals():
"""Get recent signals (Public Read-Only)"""
try:
db = LocalDatabase()
signals = db.get_recent_signals(limit=50)
return signals
except Exception as e:
logger.error(f"Error fetching signals: {e}")
raise HTTPException(status_code=500, detail="Database error")
@app.post("/test-db", dependencies=[Depends(verify_api_secret)])
async def test_db_connection():
"""
Detailed database connection test
"""
results = {
"status": "failed",
"details": [],
"config": {}
}
try:
# Check env vars (redact password)
import os
results["config"] = {
"host": os.getenv('DB_HOST'),
"port": os.getenv('DB_PORT'),
"user": os.getenv('DB_USERNAME'),
"database": os.getenv('DB_DATABASE'),
"ssl_ca_set": bool(os.getenv('DB_SSL_CA'))
}
db = LocalDatabase()
conn = db._create_connection()
if conn and conn.is_connected():
results["status"] = "success"
results["details"].append("Connection successful")
results["details"].append(f"Server Info: {conn.get_server_info()}")
cursor = conn.cursor()
cursor.execute("SELECT VERSION()")
version = cursor.fetchone()
results["details"].append(f"DB Version: {version[0]}")
conn.close()
else:
results["details"].append("Connection object create but is_connected() returned False")
except Exception as e:
results["details"].append(f"Exception: {str(e)}")
import traceback
results["traceback"] = traceback.format_exc()
return results
@app.post("/test-ollama", dependencies=[Depends(verify_api_secret)])
async def test_ollama_connection():
"""
Test Ollama connectivity and model status
"""
import requests
results = {
"status": "failed",
"details": [],
"model_found": False
}
try:
# 1. Check if Service is Up
base_url = "http://localhost:11434"
try:
resp = requests.get(f"{base_url}/api/tags", timeout=5)
if resp.status_code == 200:
results["details"].append("Ollama Service is UP")
models = resp.json().get('models', [])
model_names = [m.get('name') for m in models]
results["details"].append(f"Available Models: {', '.join(model_names)}")
if any("llama3.1" in m for m in model_names):
results["model_found"] = True
else:
results["details"].append("WARNING: llama3.1 model not found in list!")
else:
results["details"].append(f"Service returned status {resp.status_code}")
return results
except Exception as e:
results["details"].append(f"Failed to connect to Ollama Service: {e}")
return results
# 2. Test Generation (if service is up)
if results["model_found"]:
try:
payload = {
"model": "llama3.1",
"prompt": "hi",
"stream": False
}
resp = requests.post(f"{base_url}/api/generate", json=payload, timeout=10)
if resp.status_code == 200:
ans = resp.json().get('response', '')
results["details"].append(f"Generation Test Pass: '{ans[:20]}...'")
results["status"] = "success"
else:
results["details"].append(f"Generation Failed: {resp.text}")
except Exception as e:
results["details"].append(f"Generation Error: {e}")
else:
results["details"].append("Skipping generation test as model not found.")
except Exception as e:
results["details"].append(f"Unexpected Error: {e}")
return results
@app.get("/", response_class=HTMLResponse)
async def root(request: Request):
"""
Serve the Home Screen Dashboard
"""
return templates.TemplateResponse("index.html", {"request": request})
@app.get("/logs", response_class=HTMLResponse)
async def view_logs(request: Request):
"""Serve the Logs Page"""
return templates.TemplateResponse("logs.html", {"request": request})
@app.get("/api/logs")
async def get_logs():
"""Get recent logs"""
return {"logs": list(log_buffer)}
if __name__ == "__main__":
import uvicorn
uvicorn.run(app, host="0.0.0.0", port=7860)