|
import os |
|
import openai |
|
|
|
from llama_index.query_engine.retriever_query_engine import RetrieverQueryEngine |
|
from llama_index.callbacks.base import CallbackManager |
|
from llama_index import ( |
|
LLMPredictor, |
|
ServiceContext, |
|
StorageContext, |
|
load_index_from_storage, |
|
) |
|
from llama_index.llms import OpenAI |
|
import chainlit as cl |
|
|
|
|
|
openai.api_key = os.environ.get("OPENAI_API_KEY") |
|
|
|
try: |
|
|
|
storage_context = StorageContext.from_defaults(persist_dir="./storage") |
|
|
|
index = load_index_from_storage(storage_context) |
|
except: |
|
from llama_index import GPTVectorStoreIndex, SimpleDirectoryReader |
|
|
|
documents = SimpleDirectoryReader(input_files=["hitchhikers.pdf"]).load_data() |
|
index = GPTVectorStoreIndex.from_documents(documents) |
|
index.storage_context.persist() |
|
|
|
|
|
@cl.on_chat_start |
|
async def factory(): |
|
llm_predictor = LLMPredictor( |
|
llm=OpenAI( |
|
temperature=0, |
|
model="ft:gpt-3.5-turbo-0613:personal::7rG4voK4", |
|
streaming=True, |
|
context_window=2048, |
|
), |
|
) |
|
service_context = ServiceContext.from_defaults( |
|
llm_predictor=llm_predictor, |
|
chunk_size=512, |
|
callback_manager=CallbackManager([cl.LlamaIndexCallbackHandler()]), |
|
) |
|
|
|
query_engine = index.as_query_engine( |
|
service_context=service_context, |
|
streaming=True, |
|
) |
|
|
|
cl.user_session.set("query_engine", query_engine) |
|
|
|
|
|
@cl.on_message |
|
async def main(message): |
|
query_engine = cl.user_session.get("query_engine") |
|
response = await cl.make_async(query_engine.query)(message) |
|
|
|
response_message = cl.Message(content="") |
|
|
|
for token in response.response_gen: |
|
await response_message.stream_token(token=token) |
|
|
|
if response.response_txt: |
|
response_message.content = response.response_txt |
|
|
|
await response_message.send() |