Upload app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,73 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/usr/bin/env python
|
| 2 |
+
# coding: utf-8
|
| 3 |
+
|
| 4 |
+
# In[2]:
|
| 5 |
+
|
| 6 |
+
|
| 7 |
+
import streamlit as st
|
| 8 |
+
import pickle
|
| 9 |
+
import pandas as pd
|
| 10 |
+
import numpy as np
|
| 11 |
+
from datetime import timedelta
|
| 12 |
+
import yfinance as yf
|
| 13 |
+
import warnings
|
| 14 |
+
warnings.filterwarnings('ignore')
|
| 15 |
+
|
| 16 |
+
# Load your trained Linear Regression model
|
| 17 |
+
with open('mod_AAPL.pkl', 'rb') as file:
|
| 18 |
+
model = pickle.load(file)
|
| 19 |
+
|
| 20 |
+
st.title("๐ Apple Stock Forecast (Next 30 Days)")
|
| 21 |
+
st.write("Uses a Linear Regression model with `Date_Ordinal` and `Prev_Close` as features.")
|
| 22 |
+
|
| 23 |
+
# --- ๐
Select date range to fetch data
|
| 24 |
+
st.subheader("๐
Select date range to fetch Apple stock data")
|
| 25 |
+
start_date = st.date_input("Start Date", value=pd.Timestamp("2020-01-01"))
|
| 26 |
+
end_date = st.date_input("End Date", value=pd.Timestamp.now())
|
| 27 |
+
|
| 28 |
+
# --- Fetch data from Yahoo Finance
|
| 29 |
+
st.write("๐ Fetching AAPL stock data...")
|
| 30 |
+
apple_data = yf.download("AAPL", start=start_date, end=end_date)
|
| 31 |
+
|
| 32 |
+
# --- Handle empty data case
|
| 33 |
+
if apple_data.empty:
|
| 34 |
+
st.error("โ ๏ธ No data found for the selected date range. Please try another range.")
|
| 35 |
+
else:
|
| 36 |
+
st.success("โ
Data fetched successfully.")
|
| 37 |
+
st.write("Showing latest data:")
|
| 38 |
+
st.dataframe(apple_data.tail())
|
| 39 |
+
|
| 40 |
+
# --- Preprocessing
|
| 41 |
+
apple_data.index = pd.to_datetime(apple_data.index)
|
| 42 |
+
apple_data['Date_Ordinal'] = apple_data.index.map(lambda x: x.toordinal())
|
| 43 |
+
apple_data['Prev_Close'] = apple_data['Close'].shift(1)
|
| 44 |
+
apple_data.dropna(inplace=True)
|
| 45 |
+
|
| 46 |
+
# Predict next 30 days from last date
|
| 47 |
+
last_known_close = apple_data['Close'].iloc[-1]
|
| 48 |
+
last_date = apple_data.index.max()
|
| 49 |
+
future_dates = pd.date_range(start=last_date + timedelta(days=1), periods=30)
|
| 50 |
+
future_preds = []
|
| 51 |
+
|
| 52 |
+
prev_close = last_known_close
|
| 53 |
+
for date in future_dates:
|
| 54 |
+
date_ordinal = date.toordinal()
|
| 55 |
+
features = pd.DataFrame({'Date_Ordinal': [date_ordinal], 'Prev_Close': [prev_close]})
|
| 56 |
+
pred = model.predict(features)[0]
|
| 57 |
+
future_preds.append(pred)
|
| 58 |
+
prev_close = pred # Roll forward
|
| 59 |
+
|
| 60 |
+
forecast_df = pd.DataFrame({'Date': future_dates, 'Predicted_Close': future_preds})
|
| 61 |
+
|
| 62 |
+
st.subheader("๐ฎ Next 30-Day Forecast")
|
| 63 |
+
st.dataframe(forecast_df)
|
| 64 |
+
|
| 65 |
+
# --- Plot
|
| 66 |
+
st.line_chart(forecast_df.set_index('Date')['Predicted_Close'])
|
| 67 |
+
|
| 68 |
+
|
| 69 |
+
# In[ ]:
|
| 70 |
+
|
| 71 |
+
|
| 72 |
+
|
| 73 |
+
|