Spaces:
Sleeping
Sleeping
Upload app.py
Browse files
app.py
CHANGED
@@ -12,28 +12,43 @@ app = FastAPI()
|
|
12 |
|
13 |
# Initialize MediaPipe Face Detection
|
14 |
mp_face_detection = mp.solutions.face_detection
|
15 |
-
face_detection = mp_face_detection.FaceDetection(min_detection_confidence=0.
|
16 |
|
17 |
def buscar_existe(image):
|
18 |
-
|
19 |
-
print("resultado: ", image.shape)
|
20 |
-
|
21 |
-
# Convert the image to RGB
|
22 |
image_rgb = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
|
|
|
|
|
23 |
results = face_detection.process(image_rgb)
|
24 |
|
|
|
25 |
if results.detections:
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
# Ruta de predicci贸n
|
31 |
@app.post('/predict/')
|
32 |
async def predict(file: UploadFile = File(...)):
|
33 |
try:
|
34 |
-
|
35 |
-
|
36 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
37 |
return {"prediction": prediction}
|
38 |
except Exception as e:
|
39 |
raise HTTPException(status_code=500, detail=str(e))
|
|
|
|
|
|
|
|
|
|
12 |
|
13 |
# Initialize MediaPipe Face Detection
|
14 |
mp_face_detection = mp.solutions.face_detection
|
15 |
+
face_detection = mp_face_detection.FaceDetection(min_detection_confidence=0.5)
|
16 |
|
17 |
def buscar_existe(image):
|
18 |
+
# Convert the image to RGB (MediaPipe requires RGB input)
|
|
|
|
|
|
|
19 |
image_rgb = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
|
20 |
+
|
21 |
+
# Process the image
|
22 |
results = face_detection.process(image_rgb)
|
23 |
|
24 |
+
# Check if any faces were detected
|
25 |
if results.detections:
|
26 |
+
return "si"
|
27 |
+
else:
|
28 |
+
return "no"
|
29 |
+
|
30 |
# Ruta de predicci贸n
|
31 |
@app.post('/predict/')
|
32 |
async def predict(file: UploadFile = File(...)):
|
33 |
try:
|
34 |
+
# Read the file
|
35 |
+
contents = await file.read()
|
36 |
+
image = Image.open(BytesIO(contents))
|
37 |
+
|
38 |
+
# Convert PIL Image to numpy array
|
39 |
+
image_np = np.array(image)
|
40 |
+
|
41 |
+
# If the image is RGB, convert to BGR (OpenCV uses BGR)
|
42 |
+
if image_np.shape[-1] == 3:
|
43 |
+
image_np = cv2.cvtColor(image_np, cv2.COLOR_RGB2BGR)
|
44 |
+
|
45 |
+
# Perform face detection
|
46 |
+
prediction = buscar_existe(image_np)
|
47 |
+
|
48 |
return {"prediction": prediction}
|
49 |
except Exception as e:
|
50 |
raise HTTPException(status_code=500, detail=str(e))
|
51 |
+
|
52 |
+
@app.get("/")
|
53 |
+
async def root():
|
54 |
+
return {"message": "Face Detection API is running"}
|