Update app.py
Browse files
app.py
CHANGED
|
@@ -1,53 +1,20 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
-
import traceback
|
| 3 |
from fastai.vision.all import *
|
| 4 |
from huggingface_hub import from_pretrained_fastai
|
| 5 |
import torch, os
|
| 6 |
-
import torchvision.transforms as T
|
| 7 |
|
| 8 |
os.environ.setdefault("OMP_NUM_THREADS", "1")
|
| 9 |
torch.set_num_threads(1)
|
| 10 |
|
| 11 |
learn = from_pretrained_fastai("Pablogps/castle-classifier-25")
|
| 12 |
-
try:
|
| 13 |
-
|
| 14 |
-
except Exception:
|
| 15 |
-
pass
|
| 16 |
-
|
| 17 |
-
for dl in learn.dls.loaders:
|
| 18 |
-
try: dl.num_workers = 0
|
| 19 |
-
except: pass
|
| 20 |
-
|
| 21 |
labels = learn.dls.vocab
|
| 22 |
|
| 23 |
-
|
| 24 |
def predict(img):
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
# 2) Torchvision preprocessing:
|
| 30 |
-
# Resize shorter side to 256, center-crop 224, ToTensor, ImageNet normalize
|
| 31 |
-
tfm = T.Compose([
|
| 32 |
-
T.Resize(256),
|
| 33 |
-
T.CenterCrop(224),
|
| 34 |
-
T.ToTensor(), # -> [C,H,W] in [0,1]
|
| 35 |
-
T.Normalize(mean=[0.485, 0.456, 0.406],
|
| 36 |
-
std=[0.229, 0.224, 0.225]),
|
| 37 |
-
])
|
| 38 |
-
x = tfm(img).unsqueeze(0) # [1,3,224,224]
|
| 39 |
-
|
| 40 |
-
# 3) Forward pass
|
| 41 |
-
learn.model.eval()
|
| 42 |
-
logits = learn.model(x) # [1, C]
|
| 43 |
-
probs = torch.softmax(logits, dim=1)[0] # [C]
|
| 44 |
-
|
| 45 |
-
# pred, pred_idx, probs = learn.predict(img)
|
| 46 |
-
return {labels[i]: float(probs[i]) for i in range(len(labels))}
|
| 47 |
-
except Exception as e:
|
| 48 |
-
tb = traceback.format_exc()
|
| 49 |
-
print(tb, flush=True) # goes to runtime logs even if you can't see them
|
| 50 |
-
raise gr.Error(tb) # shows full traceback to you in the UI
|
| 51 |
|
| 52 |
title = "Bad castle predictor"
|
| 53 |
description = "A bad model that tries to identify the type of castle."
|
|
|
|
| 1 |
import gradio as gr
|
|
|
|
| 2 |
from fastai.vision.all import *
|
| 3 |
from huggingface_hub import from_pretrained_fastai
|
| 4 |
import torch, os
|
|
|
|
| 5 |
|
| 6 |
os.environ.setdefault("OMP_NUM_THREADS", "1")
|
| 7 |
torch.set_num_threads(1)
|
| 8 |
|
| 9 |
learn = from_pretrained_fastai("Pablogps/castle-classifier-25")
|
| 10 |
+
try: learn.to_fp32()
|
| 11 |
+
except: pass
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 12 |
labels = learn.dls.vocab
|
| 13 |
|
|
|
|
| 14 |
def predict(img):
|
| 15 |
+
img = PILImage.create(img) # same flow as before
|
| 16 |
+
pred, pred_idx, probs = learn.predict(img)
|
| 17 |
+
return {labels[i]: float(probs[i]) for i in range(len(labels))}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 18 |
|
| 19 |
title = "Bad castle predictor"
|
| 20 |
description = "A bad model that tries to identify the type of castle."
|