Spaces:
Running
Running
First commit
Browse files- app.py +34 -0
- requirements.txt +4 -0
- worker.py +93 -0
app.py
ADDED
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import worker
|
3 |
+
import requests
|
4 |
+
from pathlib import Path
|
5 |
+
import torchvision
|
6 |
+
torchvision.disable_beta_transforms_warning()
|
7 |
+
|
8 |
+
# Get data from url
|
9 |
+
url = 'https://camels.readthedocs.io/_/downloads/en/latest/pdf/'
|
10 |
+
r = requests.get(url, stream=True)
|
11 |
+
document_path = Path('metadata.pdf')
|
12 |
+
document_path.write_bytes(r.content)
|
13 |
+
|
14 |
+
worker.process_document(document_path)
|
15 |
+
|
16 |
+
def handle_prompt(message, history):
|
17 |
+
bot_response = worker.process_prompt(message)
|
18 |
+
return bot_response
|
19 |
+
|
20 |
+
greetingsmessage = "Hi, I'm the CAMELS DocBot, I'm here to assist you with any question related to the CAMELS simulations documentation"
|
21 |
+
example_questions = [
|
22 |
+
"How can i read a halo file?",
|
23 |
+
"Which simulation suites are included in CAMELS?",
|
24 |
+
"Which are the largest volumes in CAMELS simulations?",
|
25 |
+
"How can I get the power spectrum of a simulation?"
|
26 |
+
]
|
27 |
+
# chatbot = gr.Chatbot(value=[{"role": "assistant", "content": greetingsmessage}])
|
28 |
+
# chatbot = gr.Chatbot(value=[[None, greetingsmessage]])
|
29 |
+
# chatbot = gr.Chatbot(value=gr.ChatMessage(role="assistant",content="How can I help you?"))
|
30 |
+
# chatbot = gr.Chatbot(placeholder=greetingsmessage)
|
31 |
+
|
32 |
+
demo = gr.ChatInterface(handle_prompt, type="messages", title="CAMELS DocBot",examples=example_questions, theme=gr.themes.Soft(), description=greetingsmessage)#, chatbot=chatbot)
|
33 |
+
|
34 |
+
demo.launch()
|
requirements.txt
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
langchain
|
2 |
+
langchain-community
|
3 |
+
langchain-huggingface
|
4 |
+
chromadb
|
worker.py
ADDED
@@ -0,0 +1,93 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import torch
|
3 |
+
from langchain.chains import RetrievalQA
|
4 |
+
from langchain_community.embeddings import HuggingFaceInstructEmbeddings
|
5 |
+
from langchain_community.document_loaders import PyPDFLoader
|
6 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
7 |
+
from langchain_community.vectorstores import Chroma
|
8 |
+
from langchain_huggingface import HuggingFaceEndpoint
|
9 |
+
|
10 |
+
# Check for GPU availability and set the appropriate device for computation.
|
11 |
+
DEVICE = "cuda:0" if torch.cuda.is_available() else "cpu"
|
12 |
+
|
13 |
+
# Global variables
|
14 |
+
conversation_retrieval_chain = None
|
15 |
+
chat_history = []
|
16 |
+
llm_hub = None
|
17 |
+
embeddings = None
|
18 |
+
|
19 |
+
# Function to initialize the language model and its embeddings
|
20 |
+
def init_llm():
|
21 |
+
global llm_hub, embeddings
|
22 |
+
# Set up the environment variable for HuggingFace and initialize the desired model.
|
23 |
+
# tokenfile = open("api_token.txt")
|
24 |
+
# api_token = tokenfile.readline().replace("\n","")
|
25 |
+
# tokenfile.close()
|
26 |
+
# os.environ["HUGGINGFACEHUB_API_TOKEN"] = api_token
|
27 |
+
|
28 |
+
# repo name for the model
|
29 |
+
# model_id = "tiiuae/falcon-7b-instruct"
|
30 |
+
model_id = "microsoft/Phi-3.5-mini-instruct"
|
31 |
+
# model_id = "meta-llama/Llama-3.2-1B-Instruct"
|
32 |
+
|
33 |
+
# load the model into the HuggingFaceHub
|
34 |
+
llm_hub = HuggingFaceEndpoint(repo_id=model_id, temperature=0.1, max_new_tokens=600, model_kwargs={"max_length":600})
|
35 |
+
llm_hub.client.api_url = 'https://api-inference.huggingface.co/models/'+model_id
|
36 |
+
# llm_hub.invoke('foo bar')
|
37 |
+
|
38 |
+
#Initialize embeddings using a pre-trained model to represent the text data.
|
39 |
+
embedddings_model = "sentence-transformers/multi-qa-distilbert-cos-v1"
|
40 |
+
# embedddings_model = "sentence-transformers/all-MiniLM-L6-v2"
|
41 |
+
embeddings = HuggingFaceInstructEmbeddings(
|
42 |
+
model_name=embedddings_model,
|
43 |
+
model_kwargs={"device": DEVICE}
|
44 |
+
)
|
45 |
+
|
46 |
+
|
47 |
+
# Function to process a PDF document
|
48 |
+
def process_document(document_path):
|
49 |
+
global conversation_retrieval_chain
|
50 |
+
|
51 |
+
# Load the document
|
52 |
+
loader = PyPDFLoader(document_path)
|
53 |
+
documents = loader.load()
|
54 |
+
|
55 |
+
# Split the document into chunks
|
56 |
+
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1024, chunk_overlap=64)
|
57 |
+
texts = text_splitter.split_documents(documents)
|
58 |
+
|
59 |
+
# Create an embeddings database using Chroma from the split text chunks.
|
60 |
+
db = Chroma.from_documents(texts, embedding=embeddings)
|
61 |
+
|
62 |
+
|
63 |
+
# --> Build the QA chain, which utilizes the LLM and retriever for answering questions.
|
64 |
+
# By default, the vectorstore retriever uses similarity search.
|
65 |
+
# If the underlying vectorstore support maximum marginal relevance search, you can specify that as the search type (search_type="mmr").
|
66 |
+
# You can also specify search kwargs like k to use when doing retrieval. k represent how many search results send to llm
|
67 |
+
conversation_retrieval_chain = RetrievalQA.from_chain_type(
|
68 |
+
llm=llm_hub,
|
69 |
+
chain_type="stuff",
|
70 |
+
retriever=db.as_retriever(search_type="mmr", search_kwargs={'k': 6, 'lambda_mult': 0.25}),
|
71 |
+
return_source_documents=False,
|
72 |
+
input_key = "question"
|
73 |
+
# chain_type_kwargs={"prompt": prompt} # if you are using prompt template, you need to uncomment this part
|
74 |
+
)
|
75 |
+
|
76 |
+
|
77 |
+
# Function to process a user prompt
|
78 |
+
def process_prompt(prompt):
|
79 |
+
global conversation_retrieval_chain
|
80 |
+
global chat_history
|
81 |
+
|
82 |
+
# Query the model
|
83 |
+
output = conversation_retrieval_chain.invoke({"question": prompt, "chat_history": chat_history})
|
84 |
+
answer = output["result"]
|
85 |
+
|
86 |
+
# Update the chat history
|
87 |
+
chat_history.append((prompt, answer))
|
88 |
+
|
89 |
+
# Return the model's response
|
90 |
+
return answer
|
91 |
+
|
92 |
+
# Initialize the language model
|
93 |
+
init_llm()
|