Spaces:
Sleeping
Sleeping
from fastai.vision.all import * | |
from io import BytesIO | |
import requests | |
import streamlit as st | |
import numpy as np | |
import torch | |
import time | |
import cv2 | |
from numpy import random | |
from models.experimental import attempt_load | |
from utils.general import check_img_size, check_requirements, check_imshow, non_max_suppression, apply_classifier, \ | |
scale_coords, xyxy2xywh, strip_optimizer, set_logging, increment_path | |
from utils.plots import plot_one_box | |
def letterbox(img, new_shape=(640, 640), color=(114, 114, 114), auto=True, scaleFill=False, scaleup=True, stride=32): | |
# Resize and pad image while meeting stride-multiple constraints | |
shape = img.shape[:2] # current shape [height, width] | |
if isinstance(new_shape, int): | |
new_shape = (new_shape, new_shape) | |
# Scale ratio (new / old) | |
r = min(new_shape[0] / shape[0], new_shape[1] / shape[1]) | |
if not scaleup: # only scale down, do not scale up (for better test mAP) | |
r = min(r, 1.0) | |
# Compute padding | |
ratio = r, r # width, height ratios | |
new_unpad = int(round(shape[1] * r)), int(round(shape[0] * r)) | |
dw, dh = new_shape[1] - new_unpad[0], new_shape[0] - new_unpad[1] # wh padding | |
if auto: # minimum rectangle | |
dw, dh = np.mod(dw, stride), np.mod(dh, stride) # wh padding | |
elif scaleFill: # stretch | |
dw, dh = 0.0, 0.0 | |
new_unpad = (new_shape[1], new_shape[0]) | |
ratio = new_shape[1] / shape[1], new_shape[0] / shape[0] # width, height ratios | |
dw /= 2 # divide padding into 2 sides | |
dh /= 2 | |
if shape[::-1] != new_unpad: # resize | |
img = cv2.resize(img, new_unpad, interpolation=cv2.INTER_LINEAR) | |
top, bottom = int(round(dh - 0.1)), int(round(dh + 0.1)) | |
left, right = int(round(dw - 0.1)), int(round(dw + 0.1)) | |
img = cv2.copyMakeBorder(img, top, bottom, left, right, cv2.BORDER_CONSTANT, value=color) # add border | |
return img, ratio, (dw, dh) | |
def detect_modify(img0, model, conf=0.4, imgsz=640, conf_thres = 0.25, iou_thres=0.45): | |
st.image(img0, caption="Your image", use_column_width=True) | |
stride = int(model.stride.max()) # model stride | |
imgsz = check_img_size(imgsz, s=stride) # check img_size | |
# Padded resize | |
img0 = cv2.cvtColor(np.asarray(img0), cv2.COLOR_RGB2BGR) | |
img = letterbox(img0, imgsz, stride=stride)[0] | |
# Convert | |
img = img[:, :, ::-1].transpose(2, 0, 1) # BGR to RGB, to 3x416x416 | |
img = np.ascontiguousarray(img) | |
# Get names and colors | |
names = model.module.names if hasattr(model, 'module') else model.names | |
colors = [[random.randint(0, 255) for _ in range(3)] for _ in names] | |
# Run inference | |
old_img_w = old_img_h = imgsz | |
old_img_b = 1 | |
t0 = time.time() | |
img = torch.from_numpy(img).to(device) | |
# img /= 255.0 # 0 - 255 to 0.0 - 1.0 | |
img = img/255.0 | |
if img.ndimension() == 3: | |
img = img.unsqueeze(0) | |
# Inference | |
# t1 = time_synchronized() | |
with torch.no_grad(): # Calculating gradients would cause a GPU memory leak | |
pred = model(img)[0] | |
# t2 = time_synchronized() | |
# Apply NMS | |
pred = non_max_suppression(pred, conf_thres, iou_thres) | |
# t3 = time_synchronized() | |
# Process detections | |
# for i, det in enumerate(pred): # detections per image | |
gn = torch.tensor(img0.shape)[[1, 0, 1, 0]] # normalization gain whwh | |
det = pred[0] | |
if len(det): | |
# Rescale boxes from img_size to im0 size | |
det[:, :4] = scale_coords(img.shape[2:], det[:, :4], img0.shape).round() | |
# Print results | |
s = '' | |
for c in det[:, -1].unique(): | |
n = (det[:, -1] == c).sum() # detections per class | |
s += f"{n} {names[int(c)]}{'s' * (n > 1)}, " # add to string | |
# Write results | |
for *xyxy, conf, cls in reversed(det): | |
label = f'{names[int(cls)]} {conf:.2f}' | |
plot_one_box(xyxy, img0, label=label, color=colors[int(cls)], line_thickness=1) | |
f""" | |
### Prediction result: | |
""" | |
img0 = cv2.cvtColor(np.asarray(img0), cv2.COLOR_BGR2RGB) | |
st.image(img0, caption="Prediction Result", use_column_width=True) | |
#set paramters | |
weight_path = './best.pt' | |
imgsz = 640 | |
conf = 0.4 | |
conf_thres = 0.25 | |
iou_thres=0.45 | |
device = torch.device("cpu") | |
path = "./" | |
# Load model | |
model = attempt_load(weight_path, map_location=torch.device('cpu')) # load FP32 model | |
""" | |
# YOLOv7 | |
This is a object detection model for [cars]. | |
""" | |
option = st.radio("", ["Upload Image", "Image URL"]) | |
if option == "Upload Image": | |
uploaded_file = st.file_uploader("Please upload an image.") | |
if uploaded_file is not None: | |
img = PILImage.create(uploaded_file) | |
detect_modify(img, model, conf=conf, imgsz=imgsz, conf_thres=conf_thres, iou_thres=iou_thres) | |
else: | |
url = st.text_input("Please input a url.") | |
if url != "": | |
try: | |
response = requests.get(url) | |
pil_img = PILImage.create(BytesIO(response.content)) | |
detect_modify(pil_img, model, conf=conf, imgsz=imgsz, conf_thres=conf_thres, iou_thres=iou_thres) | |
except: | |
st.text("Problem reading image from", url) | |