Spaces:
Build error
Build error
commit
Browse files- yolov6/utils/checkpoint.py +60 -0
yolov6/utils/checkpoint.py
CHANGED
@@ -0,0 +1,60 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python3
|
2 |
+
# -*- coding:utf-8 -*-
|
3 |
+
import os
|
4 |
+
import shutil
|
5 |
+
import torch
|
6 |
+
import os.path as osp
|
7 |
+
from yolov6.utils.events import LOGGER
|
8 |
+
from yolov6.utils.torch_utils import fuse_model
|
9 |
+
|
10 |
+
|
11 |
+
def load_state_dict(weights, model, map_location=None):
|
12 |
+
"""Load weights from checkpoint file, only assign weights those layers' name and shape are match."""
|
13 |
+
ckpt = torch.load(weights, map_location=map_location)
|
14 |
+
state_dict = ckpt['model'].float().state_dict()
|
15 |
+
model_state_dict = model.state_dict()
|
16 |
+
state_dict = {k: v for k, v in state_dict.items() if k in model_state_dict and v.shape == model_state_dict[k].shape}
|
17 |
+
model.load_state_dict(state_dict, strict=False)
|
18 |
+
del ckpt, state_dict, model_state_dict
|
19 |
+
return model
|
20 |
+
|
21 |
+
|
22 |
+
def load_checkpoint(weights, map_location=None, inplace=True, fuse=True):
|
23 |
+
"""Load model from checkpoint file."""
|
24 |
+
LOGGER.info("Loading checkpoint from {}".format(weights))
|
25 |
+
ckpt = torch.load(weights, map_location=map_location) # load
|
26 |
+
model = ckpt['ema' if ckpt.get('ema') else 'model'].float()
|
27 |
+
if fuse:
|
28 |
+
LOGGER.info("\nFusing model...")
|
29 |
+
model = fuse_model(model).eval()
|
30 |
+
else:
|
31 |
+
model = model.eval()
|
32 |
+
return model
|
33 |
+
|
34 |
+
|
35 |
+
def save_checkpoint(ckpt, is_best, save_dir, model_name=""):
|
36 |
+
""" Save checkpoint to the disk."""
|
37 |
+
if not osp.exists(save_dir):
|
38 |
+
os.makedirs(save_dir)
|
39 |
+
filename = osp.join(save_dir, model_name + '.pt')
|
40 |
+
torch.save(ckpt, filename)
|
41 |
+
if is_best:
|
42 |
+
best_filename = osp.join(save_dir, 'best_ckpt.pt')
|
43 |
+
shutil.copyfile(filename, best_filename)
|
44 |
+
|
45 |
+
|
46 |
+
def strip_optimizer(ckpt_dir, epoch):
|
47 |
+
for s in ['best', 'last']:
|
48 |
+
ckpt_path = osp.join(ckpt_dir, '{}_ckpt.pt'.format(s))
|
49 |
+
if not osp.exists(ckpt_path):
|
50 |
+
continue
|
51 |
+
ckpt = torch.load(ckpt_path, map_location=torch.device('cpu'))
|
52 |
+
if ckpt.get('ema'):
|
53 |
+
ckpt['model'] = ckpt['ema'] # replace model with ema
|
54 |
+
for k in ['optimizer', 'ema', 'updates']: # keys
|
55 |
+
ckpt[k] = None
|
56 |
+
ckpt['epoch'] = epoch
|
57 |
+
ckpt['model'].half() # to FP16
|
58 |
+
for p in ckpt['model'].parameters():
|
59 |
+
p.requires_grad = False
|
60 |
+
torch.save(ckpt, ckpt_path)
|