Spaces:
Sleeping
Sleeping
PKUWilliamYang
commited on
Commit
·
82faf11
1
Parent(s):
5427b01
Update vtoonify_model.py
Browse files- vtoonify_model.py +12 -6
vtoonify_model.py
CHANGED
@@ -92,7 +92,7 @@ class Model():
|
|
92 |
else:
|
93 |
self.color_transfer = False
|
94 |
if style_type not in self.style_types.keys():
|
95 |
-
return
|
96 |
model_path, ind = self.style_types[style_type]
|
97 |
style_path = os.path.join('models',os.path.dirname(model_path),'exstyle_code.npy')
|
98 |
self.vtoonify.load_state_dict(torch.load(huggingface_hub.hf_hub_download(MODEL_REPO,'models/'+model_path),
|
@@ -106,7 +106,7 @@ class Model():
|
|
106 |
def detect_and_align(self, frame, top, bottom, left, right, return_para=False):
|
107 |
message = 'Error: no face detected! Please retry or change the photo.'
|
108 |
paras = get_video_crop_parameter(frame, self.landmarkpredictor, [left, right, top, bottom])
|
109 |
-
instyle =
|
110 |
h, w, scale = 0, 0, 0
|
111 |
if paras is not None:
|
112 |
h,w,top,bottom,left,right,scale = paras
|
@@ -136,16 +136,18 @@ class Model():
|
|
136 |
#@torch.inference_mode()
|
137 |
def detect_and_align_image(self, image: str, top: int, bottom: int, left: int, right: int
|
138 |
) -> tuple[np.ndarray, torch.Tensor, str]:
|
139 |
-
|
|
|
140 |
frame = cv2.imread(image)
|
141 |
if frame is None:
|
142 |
-
return np.zeros((256,256,3), np.uint8),
|
143 |
frame = cv2.cvtColor(frame, cv2.COLOR_RGB2BGR)
|
144 |
return self.detect_and_align(frame, top, bottom, left, right)
|
145 |
|
146 |
def detect_and_align_video(self, video: str, top: int, bottom: int, left: int, right: int
|
147 |
) -> tuple[np.ndarray, torch.Tensor, str]:
|
148 |
-
|
|
|
149 |
video_cap = cv2.VideoCapture(video)
|
150 |
if video_cap.get(7) == 0:
|
151 |
video_cap.release()
|
@@ -157,7 +159,9 @@ class Model():
|
|
157 |
|
158 |
def detect_and_align_full_video(self, video: str, top: int, bottom: int, left: int, right: int) -> tuple[str, torch.Tensor, str]:
|
159 |
message = 'Error: no face detected! Please retry or change the video.'
|
160 |
-
instyle =
|
|
|
|
|
161 |
video_cap = cv2.VideoCapture(video)
|
162 |
if video_cap.get(7) == 0:
|
163 |
video_cap.release()
|
@@ -212,6 +216,8 @@ class Model():
|
|
212 |
return ((y_tilde[0].cpu().numpy().transpose(1, 2, 0) + 1.0) * 127.5).astype(np.uint8), 'Successfully toonify the image'
|
213 |
|
214 |
def video_tooniy(self, aligned_video: str, instyle: torch.Tensor, exstyle: torch.Tensor, style_degree: float) -> tuple[str, str]:
|
|
|
|
|
215 |
video_cap = cv2.VideoCapture(aligned_video)
|
216 |
if instyle is None or aligned_face is None or video_cap.get(7) == 0:
|
217 |
video_cap.release()
|
|
|
92 |
else:
|
93 |
self.color_transfer = False
|
94 |
if style_type not in self.style_types.keys():
|
95 |
+
return None, 'Oops, wrong Style Type. Please select a valid model.'
|
96 |
model_path, ind = self.style_types[style_type]
|
97 |
style_path = os.path.join('models',os.path.dirname(model_path),'exstyle_code.npy')
|
98 |
self.vtoonify.load_state_dict(torch.load(huggingface_hub.hf_hub_download(MODEL_REPO,'models/'+model_path),
|
|
|
106 |
def detect_and_align(self, frame, top, bottom, left, right, return_para=False):
|
107 |
message = 'Error: no face detected! Please retry or change the photo.'
|
108 |
paras = get_video_crop_parameter(frame, self.landmarkpredictor, [left, right, top, bottom])
|
109 |
+
instyle = None
|
110 |
h, w, scale = 0, 0, 0
|
111 |
if paras is not None:
|
112 |
h,w,top,bottom,left,right,scale = paras
|
|
|
136 |
#@torch.inference_mode()
|
137 |
def detect_and_align_image(self, image: str, top: int, bottom: int, left: int, right: int
|
138 |
) -> tuple[np.ndarray, torch.Tensor, str]:
|
139 |
+
if image is None:
|
140 |
+
return np.zeros((256,256,3), np.uint8), None, 'Error: fail to load empty file.'
|
141 |
frame = cv2.imread(image)
|
142 |
if frame is None:
|
143 |
+
return np.zeros((256,256,3), np.uint8), None, 'Error: fail to load the image.'
|
144 |
frame = cv2.cvtColor(frame, cv2.COLOR_RGB2BGR)
|
145 |
return self.detect_and_align(frame, top, bottom, left, right)
|
146 |
|
147 |
def detect_and_align_video(self, video: str, top: int, bottom: int, left: int, right: int
|
148 |
) -> tuple[np.ndarray, torch.Tensor, str]:
|
149 |
+
if video is None:
|
150 |
+
return np.zeros((256,256,3), np.uint8), None, 'Error: fail to load empty file.'
|
151 |
video_cap = cv2.VideoCapture(video)
|
152 |
if video_cap.get(7) == 0:
|
153 |
video_cap.release()
|
|
|
159 |
|
160 |
def detect_and_align_full_video(self, video: str, top: int, bottom: int, left: int, right: int) -> tuple[str, torch.Tensor, str]:
|
161 |
message = 'Error: no face detected! Please retry or change the video.'
|
162 |
+
instyle = None
|
163 |
+
if video is None:
|
164 |
+
return 'default.mp4', instyle, 'Error: fail to load empty file.'
|
165 |
video_cap = cv2.VideoCapture(video)
|
166 |
if video_cap.get(7) == 0:
|
167 |
video_cap.release()
|
|
|
216 |
return ((y_tilde[0].cpu().numpy().transpose(1, 2, 0) + 1.0) * 127.5).astype(np.uint8), 'Successfully toonify the image'
|
217 |
|
218 |
def video_tooniy(self, aligned_video: str, instyle: torch.Tensor, exstyle: torch.Tensor, style_degree: float) -> tuple[str, str]:
|
219 |
+
if aligned_video is None:
|
220 |
+
return 'output.mp4', 'Opps, something wrong with the input. Please go to Step 2 and Rescale Video again.'
|
221 |
video_cap = cv2.VideoCapture(aligned_video)
|
222 |
if instyle is None or aligned_face is None or video_cap.get(7) == 0:
|
223 |
video_cap.release()
|