Spaces:
Running
on
T4
Running
on
T4
from __future__ import annotations | |
import gradio as gr | |
import pathlib | |
import sys | |
sys.path.insert(0, 'vtoonify') | |
from util import load_psp_standalone, get_video_crop_parameter, tensor2cv2 | |
import torch | |
import torch.nn as nn | |
import numpy as np | |
import dlib | |
import cv2 | |
from model.vtoonify import VToonify | |
from model.bisenet.model import BiSeNet | |
import torch.nn.functional as F | |
from torchvision import transforms | |
from model.encoder.align_all_parallel import align_face | |
import gc | |
import huggingface_hub | |
import os | |
MODEL_REPO = 'PKUWilliamYang/VToonify' | |
class Model(): | |
def __init__(self, device): | |
super().__init__() | |
self.device = device | |
self.style_types = { | |
'cartoon1': ['vtoonify_d_cartoon/vtoonify_s026_d0.5.pt', 26], | |
'cartoon1-d': ['vtoonify_d_cartoon/vtoonify_s_d.pt', 26], | |
'cartoon2-d': ['vtoonify_d_cartoon/vtoonify_s_d.pt', 64], | |
'cartoon3-d': ['vtoonify_d_cartoon/vtoonify_s_d.pt', 153], | |
'cartoon4': ['vtoonify_d_cartoon/vtoonify_s299_d0.5.pt', 299], | |
'cartoon4-d': ['vtoonify_d_cartoon/vtoonify_s_d.pt', 299], | |
'cartoon5-d': ['vtoonify_d_cartoon/vtoonify_s_d.pt', 8], | |
'comic1-d': ['vtoonify_d_comic/vtoonify_s_d.pt', 28], | |
'comic2-d': ['vtoonify_d_comic/vtoonify_s_d.pt', 18], | |
'comic3-d': ['vtoonify_d_illustration/vtoonify_s054_d_c.pt', 54], | |
'arcane1': ['vtoonify_d_arcane/vtoonify_s000_d0.5.pt', 0], | |
'arcane1-d': ['vtoonify_d_arcane/vtoonify_s_d.pt', 0], | |
'arcane2': ['vtoonify_d_arcane/vtoonify_s077_d0.5.pt', 77], | |
'arcane2-d': ['vtoonify_d_arcane/vtoonify_s_d.pt', 77], | |
'caricature1': ['vtoonify_d_caricature/vtoonify_s039_d0.5.pt', 39], | |
'caricature2': ['vtoonify_d_caricature/vtoonify_s068_d0.5.pt', 68], | |
'pixar': ['vtoonify_d_pixar/vtoonify_s052_d0.5.pt', 52], | |
'pixar-d': ['vtoonify_d_pixar/vtoonify_s_d.pt', 52], | |
} | |
self.landmarkpredictor = self._create_dlib_landmark_model() | |
self.parsingpredictor = self._create_parsing_model() | |
self.pspencoder = self._load_encoder() | |
self.transform = transforms.Compose([ | |
transforms.ToTensor(), | |
transforms.Normalize(mean=[0.5, 0.5, 0.5],std=[0.5,0.5,0.5]), | |
]) | |
self.vtoonify, self.exstyle = self._load_default_model() | |
self.color_transfer = False | |
def _create_dlib_landmark_model(): | |
return dlib.shape_predictor(huggingface_hub.hf_hub_download(MODEL_REPO, | |
'models/shape_predictor_68_face_landmarks.dat')) | |
def _create_parsing_model(self): | |
parsingpredictor = BiSeNet(n_classes=19) | |
parsingpredictor.load_state_dict(torch.load(huggingface_hub.hf_hub_download(MODEL_REPO, 'models/faceparsing.pth'), | |
map_location=lambda storage, loc: storage)) | |
parsingpredictor.to(self.device).eval() | |
return parsingpredictor | |
def _load_encoder(self) -> nn.Module: | |
style_encoder_path = huggingface_hub.hf_hub_download(MODEL_REPO,'models/encoder.pt') | |
return load_psp_standalone(style_encoder_path, self.device) | |
def _load_default_model(self) -> tuple[torch.Tensor, str]: | |
vtoonify = VToonify(backbone = 'dualstylegan') | |
vtoonify.load_state_dict(torch.load(huggingface_hub.hf_hub_download(MODEL_REPO, | |
'models/vtoonify_d_cartoon/vtoonify_s026_d0.5.pt'), | |
map_location=lambda storage, loc: storage)['g_ema']) | |
vtoonify.to(self.device) | |
tmp = np.load(huggingface_hub.hf_hub_download(MODEL_REPO,'models/vtoonify_d_cartoon/exstyle_code.npy'), allow_pickle=True).item() | |
exstyle = torch.tensor(tmp[list(tmp.keys())[26]]).to(self.device) | |
with torch.no_grad(): | |
exstyle = vtoonify.zplus2wplus(exstyle) | |
return vtoonify, exstyle | |
def load_model(self, style_type: str) -> tuple[torch.Tensor, str]: | |
if style_type == 'comic3-d': | |
self.color_transfer = True | |
else: | |
self.color_transfer = False | |
model_path, ind = self.style_types[style_type] | |
style_path = os.path.join('models',os.path.dirname(model_path),'exstyle_code.npy') | |
self.vtoonify.load_state_dict(torch.load(huggingface_hub.hf_hub_download(MODEL_REPO,'models/'+model_path), | |
map_location=lambda storage, loc: storage)['g_ema']) | |
tmp = np.load(huggingface_hub.hf_hub_download(MODEL_REPO, style_path), allow_pickle=True).item() | |
exstyle = torch.tensor(tmp[list(tmp.keys())[ind]]).to(self.device) | |
with torch.no_grad(): | |
exstyle = self.vtoonify.zplus2wplus(exstyle) | |
return exstyle, 'Model of %s loaded.'%(style_type) | |
def detect_and_align(self, frame, top, bottom, left, right, return_para=False): | |
message = 'Error: no face detected!' | |
paras = get_video_crop_parameter(frame, self.landmarkpredictor, [left, right, top, bottom]) | |
instyle = torch.zeros(1,18,512).to(self.device) | |
h, w, scale = 0, 0, 0 | |
if paras is not None: | |
h,w,top,bottom,left,right,scale = paras | |
H, W = int(bottom-top), int(right-left) | |
# for HR image, we apply gaussian blur to it to avoid over-sharp stylization results | |
kernel_1d = np.array([[0.125],[0.375],[0.375],[0.125]]) | |
if scale <= 0.75: | |
frame = cv2.sepFilter2D(frame, -1, kernel_1d, kernel_1d) | |
if scale <= 0.375: | |
frame = cv2.sepFilter2D(frame, -1, kernel_1d, kernel_1d) | |
frame = cv2.resize(frame, (w, h))[top:bottom, left:right] | |
with torch.no_grad(): | |
I = align_face(frame, self.landmarkpredictor) | |
if I is not None: | |
I = self.transform(I).unsqueeze(dim=0).to(self.device) | |
instyle = self.pspencoder(I) | |
instyle = self.vtoonify.zplus2wplus(instyle) | |
message = 'Successfully rescale the frame to (%d, %d)'%(bottom-top, right-left) | |
else: | |
frame = np.zeros((256,256,3), np.uint8) | |
else: | |
frame = np.zeros((256,256,3), np.uint8) | |
if return_para: | |
return frame, instyle, message, w, h, top, bottom, left, right, scale | |
return frame, instyle, message | |
#@torch.inference_mode() | |
def detect_and_align_image(self, image: str, top: int, bottom: int, left: int, right: int | |
) -> tuple[np.ndarray, torch.Tensor, str]: | |
frame = cv2.imread(image) | |
frame = cv2.cvtColor(frame, cv2.COLOR_RGB2BGR) | |
return self.detect_and_align(frame, top, bottom, left, right) | |
def detect_and_align_video(self, video: str, top: int, bottom: int, left: int, right: int | |
) -> tuple[np.ndarray, torch.Tensor, str]: | |
video_cap = cv2.VideoCapture(video) | |
success, frame = video_cap.read() | |
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) | |
video_cap.release() | |
return self.detect_and_align(frame, top, bottom, left, right) | |
def detect_and_align_full_video(self, video: str, top: int, bottom: int, left: int, right: int) -> tuple[str, torch.Tensor, str]: | |
message = 'Error: no face detected!' | |
instyle = torch.zeros(1,18,512).to(self.device) | |
video_cap = cv2.VideoCapture(video) | |
num = int(video_cap.get(7)) | |
success, frame = video_cap.read() | |
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) | |
frame, instyle, message, w, h, top, bottom, left, right, scale = self.detect_and_align(frame, top, bottom, left, right, True) | |
if instyle is None: | |
return 'default.mp4', instyle, message | |
fourcc = cv2.VideoWriter_fourcc(*'mp4v') | |
videoWriter = cv2.VideoWriter('input.mp4', fourcc, video_cap.get(5), (int(right-left), int(bottom-top))) | |
kernel_1d = np.array([[0.125],[0.375],[0.375],[0.125]]) | |
for i in range(num-1): | |
success, frame = video_cap.read() | |
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) | |
if scale <= 0.75: | |
frame = cv2.sepFilter2D(frame, -1, kernel_1d, kernel_1d) | |
if scale <= 0.375: | |
frame = cv2.sepFilter2D(frame, -1, kernel_1d, kernel_1d) | |
frame = cv2.resize(frame, (w, h))[top:bottom, left:right] | |
videoWriter.write(cv2.cvtColor(frame, cv2.COLOR_RGB2BGR)) | |
videoWriter.release() | |
video_cap.release() | |
return 'input.mp4', instyle, 'Successfully rescale the video to (%d, %d)'%(bottom-top, right-left) | |
def image_toonify(self, aligned_face: np.ndarray, instyle: torch.Tensor, exstyle: torch.Tensor, style_degree: float) -> np.ndarray: | |
if exstyle is None: | |
exstyle = self.exstyle | |
with torch.no_grad(): | |
if self.color_transfer: | |
s_w = exstyle | |
else: | |
s_w = instyle.clone() | |
s_w[:,:7] = exstyle[:,:7] | |
x = self.transform(aligned_face).unsqueeze(dim=0).to(self.device) | |
x_p = F.interpolate(self.parsingpredictor(2*(F.interpolate(x, scale_factor=2, mode='bilinear', align_corners=False)))[0], | |
scale_factor=0.5, recompute_scale_factor=False).detach() | |
inputs = torch.cat((x, x_p/16.), dim=1) | |
y_tilde = self.vtoonify(inputs, s_w.repeat(inputs.size(0), 1, 1), d_s = style_degree) | |
y_tilde = torch.clamp(y_tilde, -1, 1) | |
return ((y_tilde[0].cpu().numpy().transpose(1, 2, 0) + 1.0) * 127.5).astype(np.uint8) | |
def video_tooniy(self, aligned_video: str, instyle: torch.Tensor, exstyle: torch.Tensor, style_degree: float) -> str: | |
if exstyle is None: | |
exstyle = self.exstyle | |
video_cap = cv2.VideoCapture(aligned_video) | |
num = int(video_cap.get(7)) | |
fourcc = cv2.VideoWriter_fourcc(*'mp4v') | |
videoWriter = cv2.VideoWriter('output.mp4', fourcc, | |
video_cap.get(5), (int(video_cap.get(3)*4), | |
int(video_cap.get(4)*4))) | |
batch_frames = [] | |
if video_cap.get(3) != 0: | |
batch_size = max(1, int(round(4 * 256* 256/ video_cap.get(3) / video_cap.get(4)))) | |
else: | |
batch_size = 1 | |
print('Using batch size of %d on %d frames'%(batch_size, num)) | |
with torch.no_grad(): | |
if self.color_transfer: | |
s_w = exstyle | |
else: | |
s_w = instyle.clone() | |
s_w[:,:7] = exstyle[:,:7] | |
for i in range(num): | |
success, frame = video_cap.read() | |
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) | |
batch_frames += [self.transform(frame).unsqueeze(dim=0).to(self.device)] | |
if len(batch_frames) == batch_size or (i+1) == num: | |
x = torch.cat(batch_frames, dim=0) | |
batch_frames = [] | |
with torch.no_grad(): | |
x_p = F.interpolate(self.parsingpredictor(2*(F.interpolate(x, scale_factor=2, mode='bilinear', align_corners=False)))[0], | |
scale_factor=0.5, recompute_scale_factor=False).detach() | |
inputs = torch.cat((x, x_p/16.), dim=1) | |
y_tilde = self.vtoonify(inputs, s_w.repeat(inputs.size(0), 1, 1), style_degree) | |
y_tilde = torch.clamp(y_tilde, -1, 1) | |
for k in range(y_tilde.size(0)): | |
videoWriter.write(tensor2cv2(y_tilde[k].cpu())) | |
gc.collect() | |
videoWriter.release() | |
video_cap.release() | |
return 'output.mp4' | |