FRESCO / app.py
PKUWilliamYang's picture
Update app.py
61e2590 verified
import os
# os.environ['CUDA_VISIBLE_DEVICES'] = "6"
# uncomment the next line to use huggingface model in China
# os.environ['HF_ENDPOINT'] = 'https://hf-mirror.com'
import spaces
import cv2
import io
import gc
import yaml
import argparse
import torch
import torchvision
import diffusers
from diffusers import StableDiffusionPipeline, AutoencoderKL, DDPMScheduler, ControlNetModel
import gradio as gr
from enum import Enum
import imageio.v2 as imageio
from src.utils import *
from src.keyframe_selection import get_keyframe_ind
from src.diffusion_hacked import apply_FRESCO_attn, apply_FRESCO_opt, disable_FRESCO_opt
from src.diffusion_hacked import get_flow_and_interframe_paras, get_intraframe_paras
from src.pipe_FRESCO import inference
from src.free_lunch_utils import apply_freeu
import sys
sys.path.append("./src/ebsynth/deps/gmflow/")
sys.path.append("./src/EGNet/")
sys.path.append("./src/ControlNet/")
from gmflow.gmflow import GMFlow
from model import build_model
from annotator.hed import HEDdetector
from annotator.canny import CannyDetector
# from annotator.midas import MidasDetector
MidasDetector = None
import huggingface_hub
import shutil
import os
huggingface_hub.hf_hub_download('SingleZombie/FRESCO',
'boxer-punching-towards-camera.mp4',
local_dir='data')
huggingface_hub.hf_hub_download('SingleZombie/FRESCO',
'car-turn.mp4',
local_dir='data')
huggingface_hub.hf_hub_download('SingleZombie/FRESCO',
'dog.mp4',
local_dir='data')
huggingface_hub.hf_hub_download('SingleZombie/FRESCO',
'music.mp4',
local_dir='data')
huggingface_hub.hf_hub_download('PKUWilliamYang/Rerender',
'models/gmflow_sintel-0c07dcb3.pth',
local_dir='./')
huggingface_hub.hf_hub_download('PKUWilliamYang/Rerender',
'models/epoch_resnet.pth',
local_dir='./')
huggingface_hub.hf_hub_download('PKUWilliamYang/Rerender',
'models/ebsynth',
local_dir='./')
os.symlink('models', 'model')
#os.symlink(os.path.abspath(os.readlink('models/ebsynth')), 'src/ebsynth/deps/ebsynth/bin/ebsynth')
device = 'cuda' if torch.cuda.is_available() else 'cpu'
def get_models(config):
# optical flow
flow_model = GMFlow(feature_channels=128,
num_scales=1,
upsample_factor=8,
num_head=1,
attention_type='swin',
ffn_dim_expansion=4,
num_transformer_layers=6,
).to(device)
checkpoint = torch.load(
config['gmflow_path'], map_location=lambda storage, loc: storage)
weights = checkpoint['model'] if 'model' in checkpoint else checkpoint
flow_model.load_state_dict(weights, strict=False)
flow_model.eval()
# saliency detection
sod_model = build_model('resnet')
sod_model.load_state_dict(torch.load(config['sod_path']))
sod_model.to(device).eval()
# controlnet
if config['controlnet_type'] not in ['hed', 'depth', 'canny']:
config['controlnet_type'] = 'hed'
controlnet = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-"+config['controlnet_type'],
torch_dtype=torch.float16)
controlnet.to(device)
if config['controlnet_type'] == 'depth':
detector = MidasDetector()
elif config['controlnet_type'] == 'canny':
detector = CannyDetector()
else:
detector = HEDdetector()
# diffusion model
vae = AutoencoderKL.from_pretrained(
"stabilityai/sd-vae-ft-mse", torch_dtype=torch.float16)
pipe = StableDiffusionPipeline.from_pretrained(
config['sd_path'], vae=vae, torch_dtype=torch.float16)
pipe.scheduler = DDPMScheduler.from_config(pipe.scheduler.config)
pipe.to(device)
pipe.scheduler.set_timesteps(
config['num_inference_steps'], device=pipe._execution_device)
frescoProc = apply_FRESCO_attn(pipe)
frescoProc.controller.disable_controller()
apply_FRESCO_opt(pipe)
for param in flow_model.parameters():
param.requires_grad = False
for param in sod_model.parameters():
param.requires_grad = False
for param in controlnet.parameters():
param.requires_grad = False
for param in pipe.unet.parameters():
param.requires_grad = False
return pipe, frescoProc, controlnet, detector, flow_model, sod_model
def apply_control(x, detector, control_type):
if control_type == 'depth':
detected_map, _ = detector(x)
elif control_type == 'canny':
detected_map = detector(x, 50, 100)
else:
detected_map = detector(x)
return detected_map
class ProcessingState(Enum):
NULL = 0
KEY_IMGS = 1
def cfg_to_input(filename):
with open(filename, "r") as f:
cfg = yaml.safe_load(f)
use_constraints = [
'spatial-guided attention',
'cross-frame attention',
'temporal-guided attention',
'spatial-guided optimization',
'temporal-guided optimization',
]
if 'realistic' in cfg['sd_path'].lower():
a_prompt = 'RAW photo, subject, (high detailed skin:1.2), 8k uhd, dslr, soft lighting, high quality, film grain, Fujifilm XT3'
n_prompt = '(deformed iris, deformed pupils, semi-realistic, cgi, 3d, render, sketch, cartoon, drawing, anime, mutated hands and fingers:1.4), (deformed, distorted, disfigured:1.3), poorly drawn, bad anatomy, wrong anatomy, extra limb, missing limb, floating limbs, disconnected limbs, mutation, mutated, ugly, disgusting, amputation'
else:
a_prompt = 'best quality, extremely detailed'
n_prompt = 'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality'
frame_count = get_frame_count(cfg['file_path'])
num_warmup_steps = cfg['num_warmup_steps']
num_inference_steps = cfg['num_inference_steps']
strength = (num_inference_steps - num_warmup_steps) / num_inference_steps
args = [
cfg['file_path'], cfg['prompt'], cfg['sd_path'], cfg['seed'], 512, cfg['cond_scale'],
strength, cfg['controlnet_type'], 50, 100,
num_inference_steps, 7.5, a_prompt, n_prompt,
frame_count, cfg['batch_size'], cfg['mininterv'], cfg['maxinterv'],
use_constraints, True,
1, 1, 1, 1
]
return args
class GlobalState:
def __init__(self):
config_path = 'config/config_dog.yaml'
with open(config_path, "r") as f:
config = yaml.safe_load(f)
self.sd_model = config['sd_path']
self.control_type = config['controlnet_type']
self.processing_state = ProcessingState.NULL
pipe, frescoProc, controlnet, detector, flow_model, sod_model = get_models(
config)
self.pipe = pipe
self.frescoProc = frescoProc
self.controlnet = controlnet
self.detector = detector
self.flow_model = flow_model
self.sod_model = sod_model
self.keys = []
def update_controlnet_model(self, control_type):
if self.control_type == control_type:
return
self.control_type = control_type
self.controlnet = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-"+control_type,
torch_dtype=torch.float16)
self.controlnet.to(device)
if control_type == 'depth':
self.detector = MidasDetector()
elif control_type == 'canny':
self.detector = CannyDetector()
else:
self.detector = HEDdetector()
if device == 'cuda':
torch.cuda.empty_cache()
for param in self.controlnet.parameters():
param.requires_grad = False
def update_sd_model(self, sd_model):
if self.sd_model == sd_model:
return
self.sd_model = sd_model
vae = AutoencoderKL.from_pretrained(
"stabilityai/sd-vae-ft-mse", torch_dtype=torch.float16)
self.pipe = StableDiffusionPipeline.from_pretrained(
sd_model, vae=vae, torch_dtype=torch.float16)
self.pipe.scheduler = DDPMScheduler.from_config(
self.pipe.scheduler.config)
self.pipe.to(device)
self.frescoProc = apply_FRESCO_attn(self.pipe)
self.frescoProc.controller.disable_controller()
if device == 'cuda':
torch.cuda.empty_cache()
for param in self.pipe.unet.parameters():
param.requires_grad = False
@torch.no_grad()
@spaces.GPU(duration=180) # @spaces.GPU(duration=200)
def process1(input_path, prompt, sd_model, seed, image_resolution, control_strength,
x0_strength, control_type, low_threshold, high_threshold,
ddpm_steps, scale, a_prompt, n_prompt,
frame_count, batch_size, mininterv, maxinterv,
use_constraints, bg_smooth,
b1, b2, s1, s2):
image_resolution = min(image_resolution, 512)
#frame_count = min(frame_count, 8)
global_state = GlobalState()
global_state.update_controlnet_model(control_type)
global_state.update_sd_model(sd_model)
apply_freeu(global_state.pipe, b1=b1, b2=b2, s1=s1, s2=s2)
filename = os.path.splitext(os.path.basename(input_path))[0]
save_path = os.path.join('output', filename)
device = global_state.pipe._execution_device
guidance_scale = scale
do_classifier_free_guidance = True
global_state.pipe.scheduler.set_timesteps(ddpm_steps, device=device)
timesteps = global_state.pipe.scheduler.timesteps
cond_scale = [control_strength] * ddpm_steps
dilate = Dilate(device=device)
base_prompt = prompt
video_cap = cv2.VideoCapture(input_path)
frame_num = min(frame_count, int(video_cap.get(cv2.CAP_PROP_FRAME_COUNT)))
fps = int(video_cap.get(cv2.CAP_PROP_FPS))
if mininterv > maxinterv:
mininterv = maxinterv
keys = get_keyframe_ind(input_path, frame_num, mininterv, maxinterv)
keys = keys[:8] # for huggingface web demo to avoid timeout
if len(keys) < 3:
raise gr.Error('Too few (%d) keyframes detected!' % (len(keys)))
global_state.keys = keys
fps = max(int(fps * len(keys) / frame_num), 1)
os.makedirs(save_path, exist_ok=True)
os.makedirs(os.path.join(save_path, 'keys'), exist_ok=True)
os.makedirs(os.path.join(save_path, 'video'), exist_ok=True)
sublists = [keys[i:i+batch_size-2]
for i in range(2, len(keys), batch_size-2)]
sublists[0].insert(0, keys[0])
sublists[0].insert(1, keys[1])
if len(sublists) > 1 and len(sublists[-1]) < 3:
add_num = 3 - len(sublists[-1])
sublists[-1] = sublists[-2][-add_num:] + sublists[-1]
sublists[-2] = sublists[-2][:-add_num]
print('processing %d batches:\nkeyframe indexes'%(len(sublists)), sublists)
batch_ind = 0
propagation_mode = batch_ind > 0
imgs = []
record_latents = []
video_cap = cv2.VideoCapture(input_path)
for i in range(frame_num):
success, frame = video_cap.read()
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
img = resize_image(frame, image_resolution)
H, W, C = img.shape
Image.fromarray(img).save(os.path.join(
save_path, 'video/%04d.png' % (i)))
if i not in sublists[batch_ind]:
continue
imgs += [img]
if i != sublists[batch_ind][-1]:
continue
# prepare input
batch_size = len(imgs)
n_prompts = [n_prompt] * len(imgs)
prompts = [base_prompt + a_prompt] * len(sublists[batch_ind])
if propagation_mode:
prompts = ref_prompt + prompts
prompt_embeds = global_state.pipe._encode_prompt(
prompts,
device,
1,
do_classifier_free_guidance,
n_prompts,
)
imgs_torch = torch.cat([numpy2tensor(img) for img in imgs], dim=0)
edges = torch.cat([numpy2tensor(apply_control(img,
global_state.detector, control_type)[:, :, None]) for img in imgs], dim=0)
edges = edges.repeat(1, 3, 1, 1).to(device) * 0.5 + 0.5
edges = torch.cat([edges.to(global_state.pipe.unet.dtype)] * 2)
if bg_smooth:
saliency = get_saliency(imgs, global_state.sod_model, dilate)
else:
saliency = None
# prepare parameters for inter-frame and intra-frame consistency
flows, occs, attn_mask, interattn_paras = get_flow_and_interframe_paras(
global_state.flow_model, imgs)
correlation_matrix = get_intraframe_paras(global_state.pipe, imgs_torch, global_state.frescoProc,
prompt_embeds, seed=seed)
global_state.frescoProc.controller.disable_controller()
if 'spatial-guided attention' in use_constraints:
global_state.frescoProc.controller.enable_intraattn()
if 'temporal-guided attention' in use_constraints:
global_state.frescoProc.controller.enable_interattn(
interattn_paras)
if 'cross-frame attention' in use_constraints:
global_state.frescoProc.controller.enable_cfattn(attn_mask)
global_state.frescoProc.controller.enable_controller(
interattn_paras=interattn_paras, attn_mask=attn_mask)
optimize_temporal = True
if 'temporal-guided optimization' not in use_constraints:
correlation_matrix = []
if 'spatial-guided optimization' not in use_constraints:
optimize_temporal = False
apply_FRESCO_opt(global_state.pipe, steps=timesteps[:int(ddpm_steps*0.75)],
flows=flows, occs=occs, correlation_matrix=correlation_matrix,
saliency=saliency, optimize_temporal=optimize_temporal)
gc.collect()
if device == 'cuda':
torch.cuda.empty_cache()
# run!
latents = inference(global_state.pipe, global_state.controlnet, global_state.frescoProc,
imgs_torch, prompt_embeds, edges, timesteps,
cond_scale, ddpm_steps, int(
ddpm_steps*(1-x0_strength)),
True, seed, guidance_scale, True,
record_latents, propagation_mode,
flows=flows, occs=occs, saliency=saliency, repeat_noise=True)
with torch.no_grad():
image = global_state.pipe.vae.decode(
latents / global_state.pipe.vae.config.scaling_factor, return_dict=False)[0]
image = torch.clamp(image, -1, 1)
save_imgs = tensor2numpy(image)
bias = 2 if propagation_mode else 0
for ind, num in enumerate(sublists[batch_ind]):
Image.fromarray(
save_imgs[ind+bias]).save(os.path.join(save_path, 'keys/%04d.png' % (num)))
batch_ind += 1
# current batch uses the last frame of the previous batch as ref
ref_prompt = [prompts[0], prompts[-1]]
imgs = [imgs[0], imgs[-1]]
propagation_mode = batch_ind > 0
if batch_ind == len(sublists):
gc.collect()
if device == 'cuda':
torch.cuda.empty_cache()
break
writer = imageio.get_writer(os.path.join(save_path, 'key.mp4'), fps=fps)
file_list = sorted(os.listdir(os.path.join(save_path, 'keys')))
for file_name in file_list:
if not (file_name.endswith('jpg') or file_name.endswith('png')):
continue
fn = os.path.join(os.path.join(save_path, 'keys'), file_name)
curImg = imageio.imread(fn)
writer.append_data(curImg)
writer.close()
return os.path.join(save_path, 'key.mp4')
config_dir = 'config'
filenames = os.listdir(config_dir)
config_list = []
for filename in filenames:
if filename.endswith('yaml'):
config_list.append(f'{config_dir}/{filename}')
DESCRIPTION = '''
## FRESCO Video-to-Video Translation
### This space provides the function of key frame translation. Full code for full video translation is available at our [github page](https://github.com/williamyang1991/FRESCO).
### To avoid overload, we set limitations to the **maximum keyrame number** (8) and the maximum frame resolution (512).
### To remove the limitations or avoid queue on your own hardware, you may [![duplicate this Space](https://huggingface.co/datasets/huggingface/badges/raw/main/duplicate-this-space-sm-dark.svg)](https://huggingface.co/spaces/PKUWilliamYang/FRESCO?duplicate=true).
**This code is for research purpose and non-commercial use only.**
'''
ARTICLE = r"""
If FRESCO is helpful, please help to ⭐ the <a href='https://github.com/williamyang1991/FRESCO' target='_blank'>Github Repo</a>. Thanks!
[![GitHub Stars](https://img.shields.io/github/stars/williamyang1991/FRESCO?style=social)](https://github.com/williamyang1991/FRESCO)
---
📝 **Citation**
If our work is useful for your research, please consider citing:
```bibtex
@inproceedings{yang2024fresco,
 title = {FRESCO: Spatial-Temporal Correspondence for Zero-Shot Video Translation},
 author = {Yang, Shuai and Zhou, Yifan and Liu, Ziwei and and Loy, Chen Change},
booktitle = {CVPR},
 year = {2024},
}
```
📋 **License**
This project is licensed under <a rel="license" href="https://github.com/williamyang1991/FRESCO?tab=License-1-ov-file#readme">S-Lab License 1.0</a>.
Redistribution and use for non-commercial purposes should follow this license.
📧 **Contact**
If you have any questions, please feel free to reach me out at <b>williamyang@pku.edu.cn</b>.
"""
block = gr.Blocks().queue()
with block:
with gr.Row():
gr.Markdown(DESCRIPTION)
with gr.Row():
with gr.Column():
input_path = gr.Video(label='Input Video',
sources='upload',
format='mp4',
visible=True)
prompt = gr.Textbox(label='Prompt')
sd_model = gr.Dropdown(['SG161222/Realistic_Vision_V2.0',
'runwayml/stable-diffusion-v1-5',
'stablediffusionapi/rev-animated',
'stablediffusionapi/flat-2d-animerge'],
label='Base model',
value='SG161222/Realistic_Vision_V2.0')
seed = gr.Slider(label='Seed',
minimum=0,
maximum=2147483647,
step=1,
value=0,
randomize=True)
run_button1 = gr.Button(value='Run Key Frames')
with gr.Accordion('Advanced options for single frame processing',
open=False):
image_resolution = gr.Slider(label='Frame resolution',
minimum=256,
maximum=512,
value=512,
step=64)
control_strength = gr.Slider(label='ControlNet strength',
minimum=0.0,
maximum=2.0,
value=1.0,
step=0.01)
x0_strength = gr.Slider(
label='Denoising strength',
minimum=0.00,
maximum=1.05,
value=0.75,
step=0.05,
info=('0: fully recover the input.'
'1.05: fully redraw the input.'))
with gr.Row():
control_type = gr.Dropdown(['hed', 'canny', 'depth'],
label='Control type',
value='hed')
low_threshold = gr.Slider(label='Canny low threshold',
minimum=1,
maximum=255,
value=50,
step=1)
high_threshold = gr.Slider(label='Canny high threshold',
minimum=1,
maximum=255,
value=100,
step=1)
ddpm_steps = gr.Slider(label='Steps',
minimum=20,
maximum=100,
value=20,
step=20)
scale = gr.Slider(label='CFG scale',
minimum=1.1,
maximum=30.0,
value=7.5,
step=0.1)
a_prompt = gr.Textbox(label='Added prompt',
value='best quality, extremely detailed')
n_prompt = gr.Textbox(
label='Negative prompt',
value=('longbody, lowres, bad anatomy, bad hands, '
'missing fingers, extra digit, fewer digits, '
'cropped, worst quality, low quality'))
with gr.Row():
b1 = gr.Slider(label='FreeU first-stage backbone factor',
minimum=1,
maximum=1.6,
value=1,
step=0.01,
info='FreeU to enhance texture and color')
b2 = gr.Slider(label='FreeU second-stage backbone factor',
minimum=1,
maximum=1.6,
value=1,
step=0.01)
with gr.Row():
s1 = gr.Slider(label='FreeU first-stage skip factor',
minimum=0,
maximum=1,
value=1,
step=0.01)
s2 = gr.Slider(label='FreeU second-stage skip factor',
minimum=0,
maximum=1,
value=1,
step=0.01)
with gr.Accordion('Advanced options for FRESCO constraints',
open=False):
frame_count = gr.Slider(
label='Number of frames',
minimum=8,
maximum=300,
value=100,
step=1)
batch_size = gr.Slider(
label='Number of frames in a batch',
minimum=3,
maximum=8,
value=8,
step=1)
mininterv = gr.Slider(label='Min keyframe interval',
minimum=1,
maximum=20,
value=5,
step=1)
maxinterv = gr.Slider(label='Max keyframe interval',
minimum=1,
maximum=50,
value=20,
step=1)
use_constraints = gr.CheckboxGroup(
[
'spatial-guided attention',
'cross-frame attention',
'temporal-guided attention',
'spatial-guided optimization',
'temporal-guided optimization',
],
label='Select the FRESCO contraints to be used',
value=[
'spatial-guided attention',
'cross-frame attention',
'temporal-guided attention',
'spatial-guided optimization',
'temporal-guided optimization',
]),
bg_smooth = gr.Checkbox(
label='Background smoothing',
value=True,
info='Select to smooth background')
with gr.Accordion('Example configs', open=True):
example_list = [cfg_to_input(x) for x in config_list]
ips = [
input_path, prompt, sd_model, seed, image_resolution, control_strength,
x0_strength, control_type, low_threshold, high_threshold,
ddpm_steps, scale, a_prompt, n_prompt,
frame_count, batch_size, mininterv, maxinterv,
use_constraints[0], bg_smooth,
b1, b2, s1, s2
]
with gr.Column():
result_keyframe = gr.Video(label='Output key frame video',
format='mp4',
interactive=False)
with gr.Row():
example = gr.Examples(
examples=example_list,
inputs=[*ips],
fn=process1,
outputs=[result_keyframe],
#cache_examples=True
)
gr.Markdown(ARTICLE)
def input_changed(path):
if path is None:
return (gr.Slider.update(), gr.Slider.update(), gr.Slider.update())
frame_count = get_frame_count(path)
if frame_count == 0:
return (gr.Slider.update(), gr.Slider.update(), gr.Slider.update())
if frame_count <= 8:
raise gr.Error('The input video is too short!'
'Please input another video.')
min_interv_l = 1
max_interv_l = 1
min_interv_r = frame_count
max_interv_r = frame_count
return (gr.Slider(minimum=min_interv_l,
maximum=min_interv_r),
gr.Slider(minimum=max_interv_l,
maximum=max_interv_r),
gr.Slider(minimum=8,
value=frame_count,
maximum=frame_count),
)
input_path.change(input_changed, input_path, [
mininterv, maxinterv, frame_count])
input_path.upload(input_changed, input_path, [
mininterv, maxinterv, frame_count])
run_button1.click(fn=process1, inputs=ips, outputs=[result_keyframe])
block.launch()