Spaces:
Runtime error
Runtime error
from typing import List, Optional, Tuple, Any, Dict | |
from time import sleep | |
import cv2 | |
import gradio | |
import DeepFakeAI.choices | |
import DeepFakeAI.globals | |
from DeepFakeAI import wording | |
from DeepFakeAI.capturer import get_video_frame | |
from DeepFakeAI.face_analyser import get_many_faces | |
from DeepFakeAI.face_reference import clear_face_reference | |
from DeepFakeAI.typing import Frame, FaceRecognition | |
from DeepFakeAI.uis import core as ui | |
from DeepFakeAI.uis.typing import ComponentName, Update | |
from DeepFakeAI.utilities import is_image, is_video | |
FACE_RECOGNITION_DROPDOWN : Optional[gradio.Dropdown] = None | |
REFERENCE_FACE_POSITION_GALLERY : Optional[gradio.Gallery] = None | |
REFERENCE_FACE_DISTANCE_SLIDER : Optional[gradio.Slider] = None | |
def render() -> None: | |
global FACE_RECOGNITION_DROPDOWN | |
global REFERENCE_FACE_POSITION_GALLERY | |
global REFERENCE_FACE_DISTANCE_SLIDER | |
with gradio.Box(): | |
reference_face_gallery_args: Dict[str, Any] = { | |
'label': wording.get('reference_face_gallery_label'), | |
'height': 120, | |
'object_fit': 'cover', | |
'columns': 10, | |
'allow_preview': False, | |
'visible': 'reference' in DeepFakeAI.globals.face_recognition | |
} | |
if is_image(DeepFakeAI.globals.target_path): | |
reference_frame = cv2.imread(DeepFakeAI.globals.target_path) | |
reference_face_gallery_args['value'] = extract_gallery_frames(reference_frame) | |
if is_video(DeepFakeAI.globals.target_path): | |
reference_frame = get_video_frame(DeepFakeAI.globals.target_path, DeepFakeAI.globals.reference_frame_number) | |
reference_face_gallery_args['value'] = extract_gallery_frames(reference_frame) | |
FACE_RECOGNITION_DROPDOWN = gradio.Dropdown( | |
label = wording.get('face_recognition_dropdown_label'), | |
choices = DeepFakeAI.choices.face_recognition, | |
value = DeepFakeAI.globals.face_recognition | |
) | |
REFERENCE_FACE_POSITION_GALLERY = gradio.Gallery(**reference_face_gallery_args) | |
REFERENCE_FACE_DISTANCE_SLIDER = gradio.Slider( | |
label = wording.get('reference_face_distance_slider_label'), | |
value = DeepFakeAI.globals.reference_face_distance, | |
maximum = 3, | |
step = 0.05, | |
visible = 'reference' in DeepFakeAI.globals.face_recognition | |
) | |
ui.register_component('face_recognition_dropdown', FACE_RECOGNITION_DROPDOWN) | |
ui.register_component('reference_face_position_gallery', REFERENCE_FACE_POSITION_GALLERY) | |
ui.register_component('reference_face_distance_slider', REFERENCE_FACE_DISTANCE_SLIDER) | |
def listen() -> None: | |
FACE_RECOGNITION_DROPDOWN.select(update_face_recognition, inputs = FACE_RECOGNITION_DROPDOWN, outputs = [ REFERENCE_FACE_POSITION_GALLERY, REFERENCE_FACE_DISTANCE_SLIDER ]) | |
REFERENCE_FACE_POSITION_GALLERY.select(clear_and_update_face_reference_position) | |
REFERENCE_FACE_DISTANCE_SLIDER.change(update_reference_face_distance, inputs = REFERENCE_FACE_DISTANCE_SLIDER) | |
update_component_names : List[ComponentName] =\ | |
[ | |
'target_file', | |
'preview_frame_slider' | |
] | |
for component_name in update_component_names: | |
component = ui.get_component(component_name) | |
if component: | |
component.change(update_face_reference_position, outputs = REFERENCE_FACE_POSITION_GALLERY) | |
select_component_names : List[ComponentName] =\ | |
[ | |
'face_analyser_direction_dropdown', | |
'face_analyser_age_dropdown', | |
'face_analyser_gender_dropdown' | |
] | |
for component_name in select_component_names: | |
component = ui.get_component(component_name) | |
if component: | |
component.select(update_face_reference_position, outputs = REFERENCE_FACE_POSITION_GALLERY) | |
def update_face_recognition(face_recognition : FaceRecognition) -> Tuple[Update, Update]: | |
if face_recognition == 'reference': | |
DeepFakeAI.globals.face_recognition = face_recognition | |
return gradio.update(visible = True), gradio.update(visible = True) | |
if face_recognition == 'many': | |
DeepFakeAI.globals.face_recognition = face_recognition | |
return gradio.update(visible = False), gradio.update(visible = False) | |
def clear_and_update_face_reference_position(event: gradio.SelectData) -> Update: | |
clear_face_reference() | |
return update_face_reference_position(event.index) | |
def update_face_reference_position(reference_face_position : int = 0) -> Update: | |
sleep(0.2) | |
gallery_frames = [] | |
DeepFakeAI.globals.reference_face_position = reference_face_position | |
if is_image(DeepFakeAI.globals.target_path): | |
reference_frame = cv2.imread(DeepFakeAI.globals.target_path) | |
gallery_frames = extract_gallery_frames(reference_frame) | |
if is_video(DeepFakeAI.globals.target_path): | |
reference_frame = get_video_frame(DeepFakeAI.globals.target_path, DeepFakeAI.globals.reference_frame_number) | |
gallery_frames = extract_gallery_frames(reference_frame) | |
if gallery_frames: | |
return gradio.update(value = gallery_frames) | |
return gradio.update(value = None) | |
def update_reference_face_distance(reference_face_distance : float) -> Update: | |
DeepFakeAI.globals.reference_face_distance = reference_face_distance | |
return gradio.update(value = reference_face_distance) | |
def extract_gallery_frames(reference_frame : Frame) -> List[Frame]: | |
crop_frames = [] | |
faces = get_many_faces(reference_frame) | |
for face in faces: | |
start_x, start_y, end_x, end_y = map(int, face['bbox']) | |
padding_x = int((end_x - start_x) * 0.25) | |
padding_y = int((end_y - start_y) * 0.25) | |
start_x = max(0, start_x - padding_x) | |
start_y = max(0, start_y - padding_y) | |
end_x = max(0, end_x + padding_x) | |
end_y = max(0, end_y + padding_y) | |
crop_frame = reference_frame[start_y:end_y, start_x:end_x] | |
crop_frames.append(ui.normalize_frame(crop_frame)) | |
return crop_frames | |