Spaces:
Sleeping
Sleeping
""" | |
HuggingFace Model Wrapper | |
-------------------------- | |
""" | |
import torch | |
import transformers | |
import textattack | |
from textattack.models.helpers import T5ForTextToText | |
from textattack.models.tokenizers import T5Tokenizer | |
from .pytorch_model_wrapper import PyTorchModelWrapper | |
torch.cuda.empty_cache() | |
class HuggingFaceModelWrapper(PyTorchModelWrapper): | |
"""Loads a HuggingFace ``transformers`` model and tokenizer.""" | |
def __init__(self, model, tokenizer): | |
assert isinstance( | |
model, (transformers.PreTrainedModel, T5ForTextToText) | |
), f"`model` must be of type `transformers.PreTrainedModel`, but got type {type(model)}." | |
assert isinstance( | |
tokenizer, | |
( | |
transformers.PreTrainedTokenizer, | |
transformers.PreTrainedTokenizerFast, | |
T5Tokenizer, | |
), | |
), f"`tokenizer` must of type `transformers.PreTrainedTokenizer` or `transformers.PreTrainedTokenizerFast`, but got type {type(tokenizer)}." | |
self.model = model | |
self.tokenizer = tokenizer | |
def __call__(self, text_input_list): | |
"""Passes inputs to HuggingFace models as keyword arguments. | |
(Regular PyTorch ``nn.Module`` models typically take inputs as | |
positional arguments.) | |
""" | |
# Default max length is set to be int(1e30), so we force 512 to enable batching. | |
max_length = ( | |
512 | |
if self.tokenizer.model_max_length == int(1e30) | |
else self.tokenizer.model_max_length | |
) | |
inputs_dict = self.tokenizer( | |
text_input_list, | |
add_special_tokens=True, | |
padding="max_length", | |
max_length=max_length, | |
truncation=True, | |
return_tensors="pt", | |
) | |
model_device = next(self.model.parameters()).device | |
inputs_dict.to(model_device) | |
with torch.no_grad(): | |
outputs = self.model(**inputs_dict) | |
if isinstance(outputs[0], str): | |
# HuggingFace sequence-to-sequence models return a list of | |
# string predictions as output. In this case, return the full | |
# list of outputs. | |
return outputs | |
else: | |
# HuggingFace classification models return a tuple as output | |
# where the first item in the tuple corresponds to the list of | |
# scores for each input. | |
return outputs.logits | |
def get_grad(self, text_input): | |
"""Get gradient of loss with respect to input tokens. | |
Args: | |
text_input (str): input string | |
Returns: | |
Dict of ids, tokens, and gradient as numpy array. | |
""" | |
if isinstance(self.model, textattack.models.helpers.T5ForTextToText): | |
raise NotImplementedError( | |
"`get_grads` for T5FotTextToText has not been implemented yet." | |
) | |
self.model.train() | |
embedding_layer = self.model.get_input_embeddings() | |
original_state = embedding_layer.weight.requires_grad | |
embedding_layer.weight.requires_grad = True | |
emb_grads = [] | |
def grad_hook(module, grad_in, grad_out): | |
emb_grads.append(grad_out[0]) | |
emb_hook = embedding_layer.register_backward_hook(grad_hook) | |
self.model.zero_grad() | |
model_device = next(self.model.parameters()).device | |
input_dict = self.tokenizer( | |
[text_input], | |
add_special_tokens=True, | |
return_tensors="pt", | |
padding="max_length", | |
truncation=True, | |
) | |
input_dict.to(model_device) | |
predictions = self.model(**input_dict).logits | |
try: | |
labels = predictions.argmax(dim=1) | |
loss = self.model(**input_dict, labels=labels)[0] | |
except TypeError: | |
raise TypeError( | |
f"{type(self.model)} class does not take in `labels` to calculate loss. " | |
"One cause for this might be if you instantiatedyour model using `transformer.AutoModel` " | |
"(instead of `transformers.AutoModelForSequenceClassification`)." | |
) | |
loss.backward() | |
# grad w.r.t to word embeddings | |
grad = emb_grads[0][0].cpu().numpy() | |
embedding_layer.weight.requires_grad = original_state | |
emb_hook.remove() | |
self.model.eval() | |
output = {"ids": input_dict["input_ids"], "gradient": grad} | |
return output | |
def _tokenize(self, inputs): | |
"""Helper method that for `tokenize` | |
Args: | |
inputs (list[str]): list of input strings | |
Returns: | |
tokens (list[list[str]]): List of list of tokens as strings | |
""" | |
return [ | |
self.tokenizer.convert_ids_to_tokens( | |
self.tokenizer([x], truncation=True)["input_ids"][0] | |
) | |
for x in inputs | |
] | |