DCWIR-Offcial-Demo / textattack /models /helpers /glove_embedding_layer.py
PFEemp2024's picture
solving GPU error for previous version
4a1df2e
"""
Glove Embedding
---------------------------------------------------------------------
"""
import os
import numpy as np
import torch
from torch import nn as nn
from textattack.shared import logger, utils
class EmbeddingLayer(nn.Module):
"""A layer of a model that replaces word IDs with their embeddings.
This is a useful abstraction for any nn.module which wants to take word IDs
(a sequence of text) as input layer but actually manipulate words'
embeddings.
Requires some pre-trained embedding with associated word IDs.
"""
def __init__(
self,
n_d=100,
embedding_matrix=None,
word_list=None,
oov="<oov>",
pad="<pad>",
normalize=True,
):
super(EmbeddingLayer, self).__init__()
word2id = {}
if embedding_matrix is not None:
for word in word_list:
assert word not in word2id, "Duplicate words in pre-trained embeddings"
word2id[word] = len(word2id)
logger.debug(f"{len(word2id)} pre-trained word embeddings loaded.\n")
n_d = len(embedding_matrix[0])
if oov not in word2id:
word2id[oov] = len(word2id)
if pad not in word2id:
word2id[pad] = len(word2id)
self.word2id = word2id
self.n_V, self.n_d = len(word2id), n_d
self.oovid = word2id[oov]
self.padid = word2id[pad]
self.embedding = nn.Embedding(self.n_V, n_d)
self.embedding.weight.data.uniform_(-0.25, 0.25)
weight = self.embedding.weight
weight.data[: len(word_list)].copy_(torch.from_numpy(embedding_matrix))
logger.debug(f"EmbeddingLayer shape: {weight.size()}")
if normalize:
weight = self.embedding.weight
norms = weight.data.norm(2, 1)
if norms.dim() == 1:
norms = norms.unsqueeze(1)
weight.data.div_(norms.expand_as(weight.data))
def forward(self, input):
return self.embedding(input)
class GloveEmbeddingLayer(EmbeddingLayer):
"""Pre-trained Global Vectors for Word Representation (GLOVE) vectors. Uses
embeddings of dimension 200.
GloVe is an unsupervised learning algorithm for obtaining vector
representations for words. Training is performed on aggregated global
word-word co-occurrence statistics from a corpus, and the resulting
representations showcase interesting linear substructures of the word
vector space.
GloVe: Global Vectors for Word Representation. (Jeffrey Pennington,
Richard Socher, and Christopher D. Manning. 2014.)
"""
EMBEDDING_PATH = "word_embeddings/glove200"
def __init__(self, emb_layer_trainable=True):
glove_path = utils.download_from_s3(GloveEmbeddingLayer.EMBEDDING_PATH)
glove_word_list_path = os.path.join(glove_path, "glove.wordlist.npy")
word_list = np.load(glove_word_list_path)
glove_matrix_path = os.path.join(glove_path, "glove.6B.200d.mat.npy")
embedding_matrix = np.load(glove_matrix_path)
super().__init__(embedding_matrix=embedding_matrix, word_list=word_list)
self.embedding.weight.requires_grad = emb_layer_trainable