Spaces:
Sleeping
Sleeping
""" | |
Determine if maintaining the same predicted label | |
--------------------------------------------------------------------- | |
""" | |
from .classification_goal_function import ClassificationGoalFunction | |
class InputReduction(ClassificationGoalFunction): | |
"""Attempts to reduce the input down to as few words as possible while | |
maintaining the same predicted label. | |
From Feng, Wallace, Grissom, Iyyer, Rodriguez, Boyd-Graber. (2018). | |
Pathologies of Neural Models Make Interpretations Difficult. | |
https://arxiv.org/abs/1804.07781 | |
""" | |
def __init__(self, *args, target_num_words=1, **kwargs): | |
self.target_num_words = target_num_words | |
super().__init__(*args, **kwargs) | |
def _is_goal_complete(self, model_output, attacked_text): | |
return ( | |
self.ground_truth_output == model_output.argmax() | |
and attacked_text.num_words <= self.target_num_words | |
) | |
def _should_skip(self, model_output, attacked_text): | |
return self.ground_truth_output != model_output.argmax() | |
def _get_score(self, model_output, attacked_text): | |
# Give the lowest score possible to inputs which don't maintain the ground truth label. | |
if self.ground_truth_output != model_output.argmax(): | |
return 0 | |
cur_num_words = attacked_text.num_words | |
initial_num_words = self.initial_attacked_text.num_words | |
# The main goal is to reduce the number of words (num_words_score) | |
# Higher model score for the ground truth label is used as a tiebreaker (model_score) | |
num_words_score = max( | |
(initial_num_words - cur_num_words) / initial_num_words, 0 | |
) | |
model_score = model_output[self.ground_truth_output] | |
return min(num_words_score + model_score / initial_num_words, 1) | |
def extra_repr_keys(self): | |
if self.maximizable: | |
return ["maximizable"] | |
else: | |
return ["maximizable", "target_num_words"] | |