DCWIR-Offcial-Demo / flow_correction_imdb.py
PFEemp2024's picture
solving GPU error for previous version
4a1df2e
raw
history blame contribute delete
No virus
13.7 kB
import textattack
import transformers
import pandas as pd
import csv
import string
import pickle
# Construct our four components for `Attack`
from textattack.constraints.pre_transformation import (
RepeatModification,
StopwordModification,
)
from textattack.constraints.semantics import WordEmbeddingDistance
from textattack.transformations import WordSwapEmbedding
from textattack.search_methods import GreedyWordSwapWIR
import numpy as np
import json
import random
import re
import textattack.shared.attacked_text as atk
import torch.nn.functional as F
import torch
class InvertedText:
def __init__(
self,
swapped_indexes,
score,
attacked_text,
new_class,
):
self.attacked_text = attacked_text
self.swapped_indexes = (
swapped_indexes # dict of swapped indexes with their synonym
)
self.score = score # value of original class
self.new_class = new_class # class after inversion
def __repr__(self):
return f"InvertedText:\n attacked_text='{self.attacked_text}', \n swapped_indexes={self.swapped_indexes},\n score={self.score}"
def count_matching_classes(original, corrected, perturbed_texts=None):
if len(original) != len(corrected):
raise ValueError("Arrays must have the same length")
hard_samples = []
easy_samples = []
matching_count = 0
for i in range(len(corrected)):
if original[i] == corrected[i]:
matching_count += 1
easy_samples.append(perturbed_texts[i])
elif perturbed_texts != None:
hard_samples.append(perturbed_texts[i])
return matching_count, hard_samples, easy_samples
class Flow_Corrector:
def __init__(
self,
attack,
word_rank_file="en_full_ranked.json",
word_freq_file="en_full_freq.json",
wir_threshold=0.3,
):
self.attack = attack
self.attack.cuda_()
self.wir_threshold = wir_threshold
with open(word_rank_file, "r") as f:
self.word_ranked_frequence = json.load(f)
with open(word_freq_file, "r") as f:
self.word_frequence = json.load(f)
self.victim_model = attack.goal_function.model
def wir_gradient(
self,
attack,
victim_model,
detected_text,
):
_, indices_to_order = attack.get_indices_to_order(detected_text)
index_scores = np.zeros(len(indices_to_order))
grad_output = victim_model.get_grad(detected_text.tokenizer_input)
gradient = grad_output["gradient"]
word2token_mapping = detected_text.align_with_model_tokens(victim_model)
for i, index in enumerate(indices_to_order):
matched_tokens = word2token_mapping[index]
if not matched_tokens:
index_scores[i] = 0.0
else:
agg_grad = np.mean(gradient[matched_tokens], axis=0)
index_scores[i] = np.linalg.norm(agg_grad, ord=1)
index_order = np.array(indices_to_order)[(-index_scores).argsort()]
return index_order
def get_syn_freq_dict(
self,
index_order,
detected_text,
):
most_frequent_syn_dict = {}
no_syn = []
freq_thershold = len(self.word_ranked_frequence) / 10
for idx in index_order:
# get the synonyms of a specific index
try:
synonyms = [
attacked_text.words[idx]
for attacked_text in self.attack.get_transformations(
detected_text, detected_text, indices_to_modify=[idx]
)
]
# getting synonyms that exists in dataset with thiere frequency rank
ranked_synonyms = {
syn: self.word_ranked_frequence[syn]
for syn in synonyms
if syn in self.word_ranked_frequence.keys()
and self.word_ranked_frequence[syn] < freq_thershold
and self.word_ranked_frequence[detected_text.words[idx]]
> self.word_ranked_frequence[syn]
}
# selecting the M most frequent synonym
if list(ranked_synonyms.keys()) != []:
most_frequent_syn_dict[idx] = list(ranked_synonyms.keys())
except:
# no synonyms avaialble in the dataset
no_syn.append(idx)
return most_frequent_syn_dict
def build_candidates(
self, detected_text, most_frequent_syn_dict: dict, max_attempt: int
):
candidates = {}
for _ in range(max_attempt):
syn_dict = {}
current_text = detected_text
for index in most_frequent_syn_dict.keys():
syn = random.choice(most_frequent_syn_dict[index])
syn_dict[index] = syn
current_text = current_text.replace_word_at_index(index, syn)
candidates[current_text] = syn_dict
return candidates
def find_dominant_class(self, inverted_texts):
class_counts = {} # Dictionary to store the count of each new class
for text in inverted_texts:
new_class = text.new_class
class_counts[new_class] = class_counts.get(new_class, 0) + 1
# Find the most dominant class
most_dominant_class = max(class_counts, key=class_counts.get)
return most_dominant_class
def correct(self, detected_texts):
corrected_classes = []
for detected_text in detected_texts:
# convert to Attacked texts
detected_text = atk.AttackedText(detected_text)
# getting 30% most important indexes
index_order = self.wir_gradient(
self.attack, self.victim_model, detected_text
)
index_order = index_order[: int(len(index_order) * self.wir_threshold)]
# getting synonyms according to frequency conditiontions
most_frequent_syn_dict = self.get_syn_freq_dict(index_order, detected_text)
# generate M candidates
candidates = self.build_candidates(
detected_text, most_frequent_syn_dict, max_attempt=100
)
original_probs = F.softmax(self.victim_model(detected_text.text), dim=1)
original_class = torch.argmax(original_probs).item()
original_golden_prob = float(original_probs[0][original_class])
nbr_inverted = 0
inverted_texts = [] # a dictionary of inverted texts with
bad, impr = 0, 0
dict_deltas = {}
batch_inputs = [candidate.text for candidate in candidates.keys()]
batch_outputs = self.victim_model(batch_inputs)
probabilities = F.softmax(batch_outputs, dim=1)
for i, (candidate, syn_dict) in enumerate(candidates.items()):
corrected_class = torch.argmax(probabilities[i]).item()
new_golden_probability = float(probabilities[i][corrected_class])
if corrected_class != original_class:
nbr_inverted += 1
inverted_texts.append(
InvertedText(
syn_dict, new_golden_probability, candidate, corrected_class
)
)
else:
delta = new_golden_probability - original_golden_prob
if delta <= 0:
bad += 1
else:
impr += 1
dict_deltas[candidate] = delta
if len(original_probs[0]) > 2 and len(inverted_texts) >= len(candidates) / (
len(original_probs[0])
):
# selecting the most dominant class
dominant_class = self.find_dominant_class(inverted_texts)
elif len(inverted_texts) >= len(candidates) / 2:
dominant_class = corrected_class
else:
dominant_class = original_class
corrected_classes.append(dominant_class)
return corrected_classes
def remove_brackets(text):
text = text.replace("[[", "")
text = text.replace("]]", "")
return text
def clean_text(text):
pattern = "[" + re.escape(string.punctuation) + "]"
cleaned_text = re.sub(pattern, " ", text)
return cleaned_text
# Load model, tokenizer, and model_wrapper
model = transformers.AutoModelForSequenceClassification.from_pretrained(
"textattack/bert-base-uncased-imdb"
)
tokenizer = transformers.AutoTokenizer.from_pretrained(
"textattack/bert-base-uncased-imdb"
)
model_wrapper = textattack.models.wrappers.HuggingFaceModelWrapper(model, tokenizer)
goal_function = textattack.goal_functions.UntargetedClassification(model_wrapper)
constraints = [
RepeatModification(),
StopwordModification(),
WordEmbeddingDistance(min_cos_sim=0.9),
]
transformation = WordSwapEmbedding(max_candidates=50)
search_method = GreedyWordSwapWIR(wir_method="gradient")
# Construct the actual attack
attack = textattack.Attack(goal_function, constraints, transformation, search_method)
attack.cuda_()
results = pd.read_csv("IMDB_results.csv")
perturbed_texts = [
results["perturbed_text"][i]
for i in range(len(results))
if results["result_type"][i] == "Successful"
]
original_texts = [
results["original_text"][i]
for i in range(len(results))
if results["result_type"][i] == "Successful"
]
perturbed_texts = [remove_brackets(text) for text in perturbed_texts]
original_texts = [remove_brackets(text) for text in original_texts]
perturbed_texts = [clean_text(text) for text in perturbed_texts]
original_texts = [clean_text(text) for text in original_texts]
victim_model = attack.goal_function.model
print("Getting corrected classes")
print("This may take a while ...")
# we can use directly resultds in csv file
original_classes = [
torch.argmax(F.softmax(victim_model(original_text), dim=1)).item()
for original_text in original_texts
]
batch_size = 1000
num_batches = (len(perturbed_texts) + batch_size - 1) // batch_size
batched_perturbed_texts = []
batched_original_texts = []
batched_original_classes = []
for i in range(num_batches):
start = i * batch_size
end = min(start + batch_size, len(perturbed_texts))
batched_perturbed_texts.append(perturbed_texts[start:end])
batched_original_texts.append(original_texts[start:end])
batched_original_classes.append(original_classes[start:end])
print(batched_original_classes)
hard_samples_list = []
easy_samples_list = []
# Open a CSV file for writing
csv_filename = "flow_correction_results_imdb.csv"
with open(csv_filename, "w", newline="") as csvfile:
fieldnames = ["freq_threshold", "batch_num", "match_perturbed", "match_original"]
writer = csv.DictWriter(csvfile, fieldnames=fieldnames)
# Write the header row
writer.writeheader()
# Iterate over batched lists
batch_num = 0
for perturbed, original, classes in zip(
batched_perturbed_texts, batched_original_texts, batched_original_classes
):
batch_num += 1
print(f"Processing batch number: {batch_num}")
for i in range(2):
wir_threshold = 0.1 * (i + 1)
print(f"Setting Word threshold to: {wir_threshold}")
corrector = Flow_Corrector(
attack,
word_rank_file="en_full_ranked.json",
word_freq_file="en_full_freq.json",
wir_threshold=wir_threshold,
)
# Correct perturbed texts
print("Correcting perturbed texts...")
corrected_perturbed_classes = corrector.correct(perturbed)
match_perturbed, hard_samples, easy_samples = count_matching_classes(
classes, corrected_perturbed_classes, perturbed
)
hard_samples_list.extend(hard_samples)
easy_samples_list.extend(easy_samples)
print(f"Number of matching classes (perturbed): {match_perturbed}")
# Correct original texts
print("Correcting original texts...")
corrected_original_classes = corrector.correct(original)
match_original, hard_samples, easy_samples = count_matching_classes(
classes, corrected_original_classes, perturbed
)
print(f"Number of matching classes (original): {match_original}")
# Write results to CSV file
print("Writing results to CSV file...")
writer.writerow(
{
"freq_threshold": wir_threshold,
"batch_num": batch_num,
"match_perturbed": match_perturbed/len(perturbed),
"match_original": match_original/len(perturbed),
}
)
print("-" * 20)
print("savig samples for more statistics studies")
# Save hard_samples_list and easy_samples_list to files
with open('hard_samples.pkl', 'wb') as f:
pickle.dump(hard_samples_list, f)
with open('easy_samples.pkl', 'wb') as f:
pickle.dump(easy_samples_list, f)