autochrome-gen-cui / python.py
airplane194's picture
commit
d909487
raw
history blame
9.9 kB
import os
import random
import sys
from typing import Sequence, Mapping, Any, Union
import torch
import spaces
# from comfy import model_management
from nodes import NODE_CLASS_MAPPINGS as NODE_CLASS_MAPPINGS_1
from comfy_extras.nodes_custom_sampler import NODE_CLASS_MAPPINGS as NODE_CLASS_MAPPINGS_2
from custom_nodes.ComfyUI_Comfyroll_CustomNodes.node_mappings import NODE_CLASS_MAPPINGS as NODE_CLASS_MAPPINGS_3
from custom_nodes.ComfyUI_Comfyroll_CustomNodes.node_mappings import NODE_CLASS_MAPPINGS as NODE_CLASS_MAPPINGS_4
from comfy_extras.nodes_model_advanced import NODE_CLASS_MAPPINGS as NODE_CLASS_MAPPINGS_5
from comfy_extras.nodes_flux import NODE_CLASS_MAPPINGS as NODE_CLASS_MAPPINGS_6
from huggingface_hub import hf_hub_download
# Merge both mappings
NODE_CLASS_MAPPINGS = {**NODE_CLASS_MAPPINGS_1, **NODE_CLASS_MAPPINGS_2, **NODE_CLASS_MAPPINGS_3, **NODE_CLASS_MAPPINGS_4, **NODE_CLASS_MAPPINGS_5, **NODE_CLASS_MAPPINGS_6}
hf_hub_download(repo_id="black-forest-labs/FLUX.1-dev", filename="flux1-dev.safetensors", local_dir="models/unet")
hf_hub_download(repo_id="black-forest-labs/FLUX.1-dev", filename="ae.safetensors", local_dir="models/vae")
hf_hub_download(repo_id="comfyanonymous/flux_text_encoders", filename="clip_l.safetensors", local_dir="models/text_encoders")
hf_hub_download(repo_id="comfyanonymous/flux_text_encoders", filename="t5xxl_fp16.safetensors", local_dir="models/text_encoders")
def get_value_at_index(obj: Union[Sequence, Mapping], index: int) -> Any:
"""Returns the value at the given index of a sequence or mapping.
If the object is a sequence (like list or string), returns the value at the given index.
If the object is a mapping (like a dictionary), returns the value at the index-th key.
Some return a dictionary, in these cases, we look for the "results" key
Args:
obj (Union[Sequence, Mapping]): The object to retrieve the value from.
index (int): The index of the value to retrieve.
Returns:
Any: The value at the given index.
Raises:
IndexError: If the index is o of bounds for the object and the object is not a mapping.
"""
try:
return obj[index]
except KeyError:
return obj["result"][index]
def find_path(name: str, path: str = None) -> str:
"""
Recursively looks at parent folders starting from the given path until it finds the given name.
Returns the path as a Path object if found, or None otherwise.
"""
# If no path is given, use the current working directory
if path is None:
path = os.getcwd()
# Check if the current directory contains the name
if name in os.listdir(path):
path_name = os.path.join(path, name)
print(f"{name} found: {path_name}")
return path_name
# Get the parent directory
parent_directory = os.path.dirname(path)
# If the parent directory is the same as the current directory, we've reached the root and stop the search
if parent_directory == path:
return None
# Recursively call the function with the parent directory
return find_path(name, parent_directory)
def add_comfyui_directory_to_sys_path() -> None:
"""
Add 'ComfyUI' to the sys.path
"""
comfyui_path = find_path("ComfyUI")
if comfyui_path is not None and os.path.isdir(comfyui_path):
sys.path.append(comfyui_path)
print(f"'{comfyui_path}' added to sys.path")
def add_extra_model_paths() -> None:
"""
Parse the optional extra_model_paths.yaml file and add the parsed paths to the sys.path.
"""
try:
from main import load_extra_path_config
except ImportError:
print(
"Could not import load_extra_path_config from main.py. Looking in utils.extra_config instead."
)
from utils.extra_config import load_extra_path_config
extra_model_paths = find_path("extra_model_paths.yaml")
if extra_model_paths is not None:
load_extra_path_config(extra_model_paths)
else:
print("Could not find the extra_model_paths config file.")
def import_custom_nodes() -> None:
"""Find all custom nodes in the custom_nodes folder and add those node objects to NODE_CLASS_MAPPINGS
This function sets up a new asyncio event loop, initializes the PromptServer,
creates a PromptQueue, and initializes the custom nodes.
"""
import asyncio
import execution
from nodes import init_extra_nodes
import server
# Creating a new event loop and setting it as the default loop
loop = asyncio.new_event_loop()
asyncio.set_event_loop(loop)
# Creating an instance of PromptServer with the loop
server_instance = server.PromptServer(loop)
execution.PromptQueue(server_instance)
# Initializing custom nodes
init_extra_nodes()
add_comfyui_directory_to_sys_path()
import_custom_nodes()
# add_extra_model_paths()
dualcliploader = NODE_CLASS_MAPPINGS["DualCLIPLoader"]()
dualcliploader_11 = dualcliploader.load_clip(
clip_name1="t5xxl_fp16.safetensors",
clip_name2="clip_l.safetensors",
type="flux",
device="default",
)
cliptextencode = NODE_CLASS_MAPPINGS["CLIPTextEncode"]()
cliptextencode_6 = cliptextencode.encode(
text="Photo on a small glass panel. Color. Photo of trees with a body of water in the front and moutain in the background.",
clip=get_value_at_index(dualcliploader_11, 0),
)
vaeloader = NODE_CLASS_MAPPINGS["VAELoader"]()
vaeloader_10 = vaeloader.load_vae(vae_name="ae.safetensors")
unetloader = NODE_CLASS_MAPPINGS["UNETLoader"]()
unetloader_12 = unetloader.load_unet(
unet_name="flux1-dev.safetensors", weight_dtype="default"
)
ksamplerselect = NODE_CLASS_MAPPINGS["KSamplerSelect"]()
ksamplerselect_16 = ksamplerselect.get_sampler(sampler_name="dpmpp_2m")
randomnoise = NODE_CLASS_MAPPINGS["RandomNoise"]()
randomnoise_25 = randomnoise.get_noise(noise_seed='42')
loraloadermodelonly = NODE_CLASS_MAPPINGS["LoraLoaderModelOnly"]()
loraloadermodelonly_72 = loraloadermodelonly.load_lora_model_only(
lora_name='lora_weight_rank_32_alpha_32.safetensors',
strength_model=1,
model=get_value_at_index(unetloader_12, 0),
)
cr_sdxl_aspect_ratio = NODE_CLASS_MAPPINGS["CR SDXL Aspect Ratio"]()
cr_sdxl_aspect_ratio_85 = cr_sdxl_aspect_ratio.Aspect_Ratio(
width=1024,
height=1024,
aspect_ratio="4:3 landscape 1152x896",
swap_dimensions="Off",
upscale_factor=1.5,
batch_size=1,
)
modelsamplingflux = NODE_CLASS_MAPPINGS["ModelSamplingFlux"]()
fluxguidance = NODE_CLASS_MAPPINGS["FluxGuidance"]()
basicguider = NODE_CLASS_MAPPINGS["BasicGuider"]()
basicscheduler = NODE_CLASS_MAPPINGS["BasicScheduler"]()
samplercustomadvanced = NODE_CLASS_MAPPINGS["SamplerCustomAdvanced"]()
vaedecode = NODE_CLASS_MAPPINGS["VAEDecode"]()
def model_loading():
# loraloadermodelonly = NODE_CLASS_MAPPINGS["LoraLoaderModelOnly"]()
# loraloadermodelonly_72 = loraloadermodelonly.load_lora_model_only(
# lora_name=lora_weight_path,
# strength_model=1,
# model=get_value_at_index(unetloader_12, 0),
# )
model_loaders = [dualcliploader_11, vaeloader_10, unetloader_12, loraloadermodelonly_72]
valid_models = [
getattr(loader[0], 'patcher', loader[0])
for loader in model_loaders
if not isinstance(loader[0], dict) and not isinstance(getattr(loader[0], 'patcher', None), dict)
]
#Load the models
# model_management.load_models_gpu(valid_models)
def generate_image(prompt,
height,
width,
guidance_scale,
aspect_ratio,
seed,
num_inference_steps,
):
cliptextencode = NODE_CLASS_MAPPINGS["CLIPTextEncode"]()
cliptextencode_6 = cliptextencode.encode(
text=prompt,
clip=get_value_at_index(dualcliploader_11, 0),
)
cr_sdxl_aspect_ratio = NODE_CLASS_MAPPINGS["CR SDXL Aspect Ratio"]()
cr_sdxl_aspect_ratio_85 = cr_sdxl_aspect_ratio.Aspect_Ratio(
width=width,
height=height,
aspect_ratio=aspect_ratio,
swap_dimensions="Off",
upscale_factor=1.5,
batch_size=1,
)
with torch.inference_mode():
for q in range(1):
modelsamplingflux_61 = modelsamplingflux.patch(
max_shift=1.15,
base_shift=0.5,
width=get_value_at_index(cr_sdxl_aspect_ratio_85, 0),
height=get_value_at_index(cr_sdxl_aspect_ratio_85, 1),
model=get_value_at_index(loraloadermodelonly_72, 0),
)
fluxguidance_60 = fluxguidance.append(
guidance=guidance_scale, conditioning=get_value_at_index(cliptextencode_6, 0)
)
basicguider_22 = basicguider.get_guider(
model=get_value_at_index(modelsamplingflux_61, 0),
conditioning=get_value_at_index(fluxguidance_60, 0),
)
basicscheduler_17 = basicscheduler.get_sigmas(
scheduler="sgm_uniform",
steps=num_inference_steps,
denoise=1,
model=get_value_at_index(modelsamplingflux_61, 0),
)
samplercustomadvanced_13 = samplercustomadvanced.sample(
noise=get_value_at_index(randomnoise_25, 0),
guider=get_value_at_index(basicguider_22, 0),
sampler=get_value_at_index(ksamplerselect_16, 0),
sigmas=get_value_at_index(basicscheduler_17, 0),
latent_image=get_value_at_index(cr_sdxl_aspect_ratio_85, 4),
)
vaedecode_8 = vaedecode.decode(
samples=get_value_at_index(samplercustomadvanced_13, 0),
vae=get_value_at_index(vaeloader_10, 0),
)
# saveimage_9 = saveimage.save_images(
# filename_prefix="MarkuryFLUX", images=get_value_at_index(vaedecode_8, 0)
# )
return get_value_at_index(vaedecode_8, 0), seed