Spaces:
Sleeping
Sleeping
| import os | |
| import random | |
| import sys | |
| from typing import Sequence, Mapping, Any, Union | |
| import torch | |
| import spaces | |
| # from comfy import model_management | |
| from nodes import NODE_CLASS_MAPPINGS as NODE_CLASS_MAPPINGS_1 | |
| from comfy_extras.nodes_custom_sampler import NODE_CLASS_MAPPINGS as NODE_CLASS_MAPPINGS_2 | |
| from custom_nodes.ComfyUI_Comfyroll_CustomNodes.node_mappings import NODE_CLASS_MAPPINGS as NODE_CLASS_MAPPINGS_3 | |
| from custom_nodes.ComfyUI_Comfyroll_CustomNodes.node_mappings import NODE_CLASS_MAPPINGS as NODE_CLASS_MAPPINGS_4 | |
| from comfy_extras.nodes_model_advanced import NODE_CLASS_MAPPINGS as NODE_CLASS_MAPPINGS_5 | |
| from comfy_extras.nodes_flux import NODE_CLASS_MAPPINGS as NODE_CLASS_MAPPINGS_6 | |
| from huggingface_hub import hf_hub_download | |
| # Merge both mappings | |
| NODE_CLASS_MAPPINGS = {**NODE_CLASS_MAPPINGS_1, **NODE_CLASS_MAPPINGS_2, **NODE_CLASS_MAPPINGS_3, **NODE_CLASS_MAPPINGS_4, **NODE_CLASS_MAPPINGS_5, **NODE_CLASS_MAPPINGS_6} | |
| hf_hub_download(repo_id="black-forest-labs/FLUX.1-dev", filename="flux1-dev.safetensors", local_dir="models/unet") | |
| hf_hub_download(repo_id="black-forest-labs/FLUX.1-dev", filename="ae.safetensors", local_dir="models/vae") | |
| hf_hub_download(repo_id="comfyanonymous/flux_text_encoders", filename="clip_l.safetensors", local_dir="models/text_encoders") | |
| hf_hub_download(repo_id="comfyanonymous/flux_text_encoders", filename="t5xxl_fp16.safetensors", local_dir="models/text_encoders") | |
| def get_value_at_index(obj: Union[Sequence, Mapping], index: int) -> Any: | |
| """Returns the value at the given index of a sequence or mapping. | |
| If the object is a sequence (like list or string), returns the value at the given index. | |
| If the object is a mapping (like a dictionary), returns the value at the index-th key. | |
| Some return a dictionary, in these cases, we look for the "results" key | |
| Args: | |
| obj (Union[Sequence, Mapping]): The object to retrieve the value from. | |
| index (int): The index of the value to retrieve. | |
| Returns: | |
| Any: The value at the given index. | |
| Raises: | |
| IndexError: If the index is o of bounds for the object and the object is not a mapping. | |
| """ | |
| try: | |
| return obj[index] | |
| except KeyError: | |
| return obj["result"][index] | |
| def find_path(name: str, path: str = None) -> str: | |
| """ | |
| Recursively looks at parent folders starting from the given path until it finds the given name. | |
| Returns the path as a Path object if found, or None otherwise. | |
| """ | |
| # If no path is given, use the current working directory | |
| if path is None: | |
| path = os.getcwd() | |
| # Check if the current directory contains the name | |
| if name in os.listdir(path): | |
| path_name = os.path.join(path, name) | |
| print(f"{name} found: {path_name}") | |
| return path_name | |
| # Get the parent directory | |
| parent_directory = os.path.dirname(path) | |
| # If the parent directory is the same as the current directory, we've reached the root and stop the search | |
| if parent_directory == path: | |
| return None | |
| # Recursively call the function with the parent directory | |
| return find_path(name, parent_directory) | |
| def add_comfyui_directory_to_sys_path() -> None: | |
| """ | |
| Add 'ComfyUI' to the sys.path | |
| """ | |
| comfyui_path = find_path("ComfyUI") | |
| if comfyui_path is not None and os.path.isdir(comfyui_path): | |
| sys.path.append(comfyui_path) | |
| print(f"'{comfyui_path}' added to sys.path") | |
| def add_extra_model_paths() -> None: | |
| """ | |
| Parse the optional extra_model_paths.yaml file and add the parsed paths to the sys.path. | |
| """ | |
| try: | |
| from main import load_extra_path_config | |
| except ImportError: | |
| print( | |
| "Could not import load_extra_path_config from main.py. Looking in utils.extra_config instead." | |
| ) | |
| from utils.extra_config import load_extra_path_config | |
| extra_model_paths = find_path("extra_model_paths.yaml") | |
| if extra_model_paths is not None: | |
| load_extra_path_config(extra_model_paths) | |
| else: | |
| print("Could not find the extra_model_paths config file.") | |
| def import_custom_nodes() -> None: | |
| """Find all custom nodes in the custom_nodes folder and add those node objects to NODE_CLASS_MAPPINGS | |
| This function sets up a new asyncio event loop, initializes the PromptServer, | |
| creates a PromptQueue, and initializes the custom nodes. | |
| """ | |
| import asyncio | |
| import execution | |
| from nodes import init_extra_nodes | |
| import server | |
| # Creating a new event loop and setting it as the default loop | |
| loop = asyncio.new_event_loop() | |
| asyncio.set_event_loop(loop) | |
| # Creating an instance of PromptServer with the loop | |
| server_instance = server.PromptServer(loop) | |
| execution.PromptQueue(server_instance) | |
| # Initializing custom nodes | |
| init_extra_nodes() | |
| add_comfyui_directory_to_sys_path() | |
| import_custom_nodes() | |
| # add_extra_model_paths() | |
| dualcliploader = NODE_CLASS_MAPPINGS["DualCLIPLoader"]() | |
| dualcliploader_11 = dualcliploader.load_clip( | |
| clip_name1="t5xxl_fp16.safetensors", | |
| clip_name2="clip_l.safetensors", | |
| type="flux", | |
| device="default", | |
| ) | |
| cliptextencode = NODE_CLASS_MAPPINGS["CLIPTextEncode"]() | |
| cliptextencode_6 = cliptextencode.encode( | |
| text="Photo on a small glass panel. Color. Photo of trees with a body of water in the front and moutain in the background.", | |
| clip=get_value_at_index(dualcliploader_11, 0), | |
| ) | |
| vaeloader = NODE_CLASS_MAPPINGS["VAELoader"]() | |
| vaeloader_10 = vaeloader.load_vae(vae_name="ae.safetensors") | |
| unetloader = NODE_CLASS_MAPPINGS["UNETLoader"]() | |
| unetloader_12 = unetloader.load_unet( | |
| unet_name="flux1-dev.safetensors", weight_dtype="default" | |
| ) | |
| ksamplerselect = NODE_CLASS_MAPPINGS["KSamplerSelect"]() | |
| ksamplerselect_16 = ksamplerselect.get_sampler(sampler_name="dpmpp_2m") | |
| randomnoise = NODE_CLASS_MAPPINGS["RandomNoise"]() | |
| randomnoise_25 = randomnoise.get_noise(noise_seed='42') | |
| loraloadermodelonly = NODE_CLASS_MAPPINGS["LoraLoaderModelOnly"]() | |
| loraloadermodelonly_72 = loraloadermodelonly.load_lora_model_only( | |
| lora_name='lora_weight_rank_32_alpha_32.safetensors', | |
| strength_model=1, | |
| model=get_value_at_index(unetloader_12, 0), | |
| ) | |
| cr_sdxl_aspect_ratio = NODE_CLASS_MAPPINGS["CR SDXL Aspect Ratio"]() | |
| cr_sdxl_aspect_ratio_85 = cr_sdxl_aspect_ratio.Aspect_Ratio( | |
| width=1024, | |
| height=1024, | |
| aspect_ratio="4:3 landscape 1152x896", | |
| swap_dimensions="Off", | |
| upscale_factor=1.5, | |
| batch_size=1, | |
| ) | |
| modelsamplingflux = NODE_CLASS_MAPPINGS["ModelSamplingFlux"]() | |
| fluxguidance = NODE_CLASS_MAPPINGS["FluxGuidance"]() | |
| basicguider = NODE_CLASS_MAPPINGS["BasicGuider"]() | |
| basicscheduler = NODE_CLASS_MAPPINGS["BasicScheduler"]() | |
| samplercustomadvanced = NODE_CLASS_MAPPINGS["SamplerCustomAdvanced"]() | |
| vaedecode = NODE_CLASS_MAPPINGS["VAEDecode"]() | |
| def model_loading(): | |
| # loraloadermodelonly = NODE_CLASS_MAPPINGS["LoraLoaderModelOnly"]() | |
| # loraloadermodelonly_72 = loraloadermodelonly.load_lora_model_only( | |
| # lora_name=lora_weight_path, | |
| # strength_model=1, | |
| # model=get_value_at_index(unetloader_12, 0), | |
| # ) | |
| model_loaders = [dualcliploader_11, vaeloader_10, unetloader_12, loraloadermodelonly_72] | |
| valid_models = [ | |
| getattr(loader[0], 'patcher', loader[0]) | |
| for loader in model_loaders | |
| if not isinstance(loader[0], dict) and not isinstance(getattr(loader[0], 'patcher', None), dict) | |
| ] | |
| #Load the models | |
| # model_management.load_models_gpu(valid_models) | |
| def generate_image(prompt, | |
| height, | |
| width, | |
| guidance_scale, | |
| aspect_ratio, | |
| seed, | |
| num_inference_steps, | |
| ): | |
| cliptextencode = NODE_CLASS_MAPPINGS["CLIPTextEncode"]() | |
| cliptextencode_6 = cliptextencode.encode( | |
| text=prompt, | |
| clip=get_value_at_index(dualcliploader_11, 0), | |
| ) | |
| cr_sdxl_aspect_ratio = NODE_CLASS_MAPPINGS["CR SDXL Aspect Ratio"]() | |
| cr_sdxl_aspect_ratio_85 = cr_sdxl_aspect_ratio.Aspect_Ratio( | |
| width=width, | |
| height=height, | |
| aspect_ratio=aspect_ratio, | |
| swap_dimensions="Off", | |
| upscale_factor=1.5, | |
| batch_size=1, | |
| ) | |
| with torch.inference_mode(): | |
| for q in range(1): | |
| modelsamplingflux_61 = modelsamplingflux.patch( | |
| max_shift=1.15, | |
| base_shift=0.5, | |
| width=get_value_at_index(cr_sdxl_aspect_ratio_85, 0), | |
| height=get_value_at_index(cr_sdxl_aspect_ratio_85, 1), | |
| model=get_value_at_index(loraloadermodelonly_72, 0), | |
| ) | |
| fluxguidance_60 = fluxguidance.append( | |
| guidance=guidance_scale, conditioning=get_value_at_index(cliptextencode_6, 0) | |
| ) | |
| basicguider_22 = basicguider.get_guider( | |
| model=get_value_at_index(modelsamplingflux_61, 0), | |
| conditioning=get_value_at_index(fluxguidance_60, 0), | |
| ) | |
| basicscheduler_17 = basicscheduler.get_sigmas( | |
| scheduler="sgm_uniform", | |
| steps=num_inference_steps, | |
| denoise=1, | |
| model=get_value_at_index(modelsamplingflux_61, 0), | |
| ) | |
| samplercustomadvanced_13 = samplercustomadvanced.sample( | |
| noise=get_value_at_index(randomnoise_25, 0), | |
| guider=get_value_at_index(basicguider_22, 0), | |
| sampler=get_value_at_index(ksamplerselect_16, 0), | |
| sigmas=get_value_at_index(basicscheduler_17, 0), | |
| latent_image=get_value_at_index(cr_sdxl_aspect_ratio_85, 4), | |
| ) | |
| vaedecode_8 = vaedecode.decode( | |
| samples=get_value_at_index(samplercustomadvanced_13, 0), | |
| vae=get_value_at_index(vaeloader_10, 0), | |
| ) | |
| # saveimage_9 = saveimage.save_images( | |
| # filename_prefix="MarkuryFLUX", images=get_value_at_index(vaedecode_8, 0) | |
| # ) | |
| return get_value_at_index(vaedecode_8, 0), seed | |