Spaces:
Running
Running
Upload 7 files
Browse files- multitask_prompt_tuning.ipynb +408 -0
- peft_ia3_seq2seq.ipynb +2711 -0
- peft_lora_seq2seq.ipynb +486 -0
- peft_lora_seq2seq_accelerate_big_model_inference.ipynb +253 -0
- peft_prefix_tuning_seq2seq.ipynb +516 -0
- peft_prompt_tuning_seq2seq.ipynb +804 -0
- peft_prompt_tuning_seq2seq_with_generate.ipynb +757 -0
multitask_prompt_tuning.ipynb
ADDED
|
@@ -0,0 +1,408 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"cells": [
|
| 3 |
+
{
|
| 4 |
+
"cell_type": "code",
|
| 5 |
+
"execution_count": null,
|
| 6 |
+
"id": "58ff91ca-ce92-43d0-ae8b-4e9e89e193f6",
|
| 7 |
+
"metadata": {
|
| 8 |
+
"tags": []
|
| 9 |
+
},
|
| 10 |
+
"outputs": [],
|
| 11 |
+
"source": [
|
| 12 |
+
"from datasets import load_dataset\n",
|
| 13 |
+
"from transformers import set_seed, AutoModelForSeq2SeqLM, AutoTokenizer\n",
|
| 14 |
+
"from peft import get_peft_model, MultitaskPromptTuningConfig, TaskType, MultitaskPromptTuningInit\n",
|
| 15 |
+
"\n",
|
| 16 |
+
"set_seed(42)\n",
|
| 17 |
+
"\n",
|
| 18 |
+
"model_name = \"google/flan-t5-base\"\n",
|
| 19 |
+
"\n",
|
| 20 |
+
"peft_config = MultitaskPromptTuningConfig(\n",
|
| 21 |
+
" tokenizer_name_or_path=model_name,\n",
|
| 22 |
+
" num_tasks=2,\n",
|
| 23 |
+
" task_type=TaskType.SEQ_2_SEQ_LM,\n",
|
| 24 |
+
" prompt_tuning_init=MultitaskPromptTuningInit.TEXT,\n",
|
| 25 |
+
" num_virtual_tokens=50,\n",
|
| 26 |
+
" num_transformer_submodules=1,\n",
|
| 27 |
+
" prompt_tuning_init_text=\"classify the following into either positive or negative, or entailment, neutral or contradiction:\",\n",
|
| 28 |
+
")\n",
|
| 29 |
+
"\n",
|
| 30 |
+
"tokenizer = AutoTokenizer.from_pretrained(model_name)\n",
|
| 31 |
+
"model = AutoModelForSeq2SeqLM.from_pretrained(model_name)\n",
|
| 32 |
+
"model = get_peft_model(model, peft_config)\n",
|
| 33 |
+
"\n",
|
| 34 |
+
"model = model.cuda()\n",
|
| 35 |
+
"\n",
|
| 36 |
+
"\n",
|
| 37 |
+
"def send_to_device(batch):\n",
|
| 38 |
+
" for i in batch:\n",
|
| 39 |
+
" batch[i] = batch[i].cuda()\n",
|
| 40 |
+
" return batch"
|
| 41 |
+
]
|
| 42 |
+
},
|
| 43 |
+
{
|
| 44 |
+
"cell_type": "code",
|
| 45 |
+
"execution_count": null,
|
| 46 |
+
"id": "eb112bc1-ffaf-49fa-a216-0d601ec304ee",
|
| 47 |
+
"metadata": {
|
| 48 |
+
"tags": []
|
| 49 |
+
},
|
| 50 |
+
"outputs": [],
|
| 51 |
+
"source": [
|
| 52 |
+
"def get_sst2(split: str):\n",
|
| 53 |
+
" examples = load_dataset(\"sst2\")[split]\n",
|
| 54 |
+
" result_examples = []\n",
|
| 55 |
+
" for example in examples:\n",
|
| 56 |
+
" result_examples.append({})\n",
|
| 57 |
+
"\n",
|
| 58 |
+
" result_examples[-1][\"input\"] = example[\"sentence\"].strip() + \"</s>\"\n",
|
| 59 |
+
" result_examples[-1][\"output\"] = (\n",
|
| 60 |
+
" f\"positive{tokenizer.eos_token}\" if example[\"label\"] == 1 else f\"negative{tokenizer.eos_token}\"\n",
|
| 61 |
+
" )\n",
|
| 62 |
+
" result_examples[-1][\"task_id\"] = 0\n",
|
| 63 |
+
"\n",
|
| 64 |
+
" return result_examples\n",
|
| 65 |
+
"\n",
|
| 66 |
+
"\n",
|
| 67 |
+
"def get_mnli(split: str):\n",
|
| 68 |
+
" examples = load_dataset(\"multi_nli\")[split]\n",
|
| 69 |
+
" result_examples = []\n",
|
| 70 |
+
" for example in examples:\n",
|
| 71 |
+
" result_examples.append({})\n",
|
| 72 |
+
"\n",
|
| 73 |
+
" result_examples[-1][\"input\"] = example[\"premise\"].strip() + \" \" + example[\"hypothesis\"].strip() + \"</s>\"\n",
|
| 74 |
+
"\n",
|
| 75 |
+
" if example[\"label\"] == 0:\n",
|
| 76 |
+
" result_examples[-1][\"output\"] = f\"entailment{tokenizer.eos_token}\"\n",
|
| 77 |
+
" elif example[\"label\"] == 1:\n",
|
| 78 |
+
" result_examples[-1][\"output\"] = f\"neutral{tokenizer.eos_token}\"\n",
|
| 79 |
+
" else:\n",
|
| 80 |
+
" result_examples[-1][\"output\"] = f\"contradiction{tokenizer.eos_token}\"\n",
|
| 81 |
+
"\n",
|
| 82 |
+
" result_examples[-1][\"task_id\"] = 1\n",
|
| 83 |
+
"\n",
|
| 84 |
+
" return result_examples"
|
| 85 |
+
]
|
| 86 |
+
},
|
| 87 |
+
{
|
| 88 |
+
"cell_type": "code",
|
| 89 |
+
"execution_count": null,
|
| 90 |
+
"id": "e5a16ec4-8fef-4ba9-95b6-a661eb51e50c",
|
| 91 |
+
"metadata": {
|
| 92 |
+
"tags": []
|
| 93 |
+
},
|
| 94 |
+
"outputs": [],
|
| 95 |
+
"source": [
|
| 96 |
+
"from typing import Tuple\n",
|
| 97 |
+
"from torch.utils.data import Dataset, DataLoader\n",
|
| 98 |
+
"import torch\n",
|
| 99 |
+
"\n",
|
| 100 |
+
"\n",
|
| 101 |
+
"class MyDataset(Dataset):\n",
|
| 102 |
+
" def __init__(self, split: str, mode: str = \"source\") -> None:\n",
|
| 103 |
+
" super().__init__()\n",
|
| 104 |
+
"\n",
|
| 105 |
+
" if split == \"train\":\n",
|
| 106 |
+
" if mode == \"source\":\n",
|
| 107 |
+
" self.examples = get_sst2(split) + get_mnli(split)\n",
|
| 108 |
+
" elif mode == \"target\":\n",
|
| 109 |
+
" self.examples = get_sst2(split)\n",
|
| 110 |
+
" if split == \"val\":\n",
|
| 111 |
+
" self.examples = get_sst2(\"validation\")\n",
|
| 112 |
+
" if split == \"test\":\n",
|
| 113 |
+
" self.examples = get_sst2(\"validation\")\n",
|
| 114 |
+
"\n",
|
| 115 |
+
" def __getitem__(self, index) -> dict:\n",
|
| 116 |
+
" return self.examples[index]\n",
|
| 117 |
+
"\n",
|
| 118 |
+
" def __len__(self) -> int:\n",
|
| 119 |
+
" return len(self.examples)\n",
|
| 120 |
+
"\n",
|
| 121 |
+
" def __getitem__(self, index) -> dict:\n",
|
| 122 |
+
" return self.examples[index]\n",
|
| 123 |
+
"\n",
|
| 124 |
+
" def __len__(self) -> int:\n",
|
| 125 |
+
" return len(self.examples)\n",
|
| 126 |
+
"\n",
|
| 127 |
+
"\n",
|
| 128 |
+
"def collate_fn(batch: dict) -> Tuple[torch.Tensor, torch.Tensor]:\n",
|
| 129 |
+
" input = [i[\"input\"] for i in batch]\n",
|
| 130 |
+
" input = tokenizer(input, add_special_tokens=False, return_tensors=\"pt\", padding=True)\n",
|
| 131 |
+
"\n",
|
| 132 |
+
" output = [i[\"output\"] for i in batch]\n",
|
| 133 |
+
" output = tokenizer(output, add_special_tokens=False, return_tensors=\"pt\", padding=True).input_ids\n",
|
| 134 |
+
" output[output == tokenizer.pad_token_id] = -100\n",
|
| 135 |
+
"\n",
|
| 136 |
+
" task_ids = [i[\"task_id\"] for i in batch]\n",
|
| 137 |
+
" task_ids = torch.tensor(task_ids)\n",
|
| 138 |
+
"\n",
|
| 139 |
+
" return {\n",
|
| 140 |
+
" \"input_ids\": input.input_ids,\n",
|
| 141 |
+
" \"attention_mask\": input.attention_mask,\n",
|
| 142 |
+
" \"labels\": output,\n",
|
| 143 |
+
" \"task_ids\": task_ids,\n",
|
| 144 |
+
" }\n",
|
| 145 |
+
"\n",
|
| 146 |
+
"\n",
|
| 147 |
+
"train = DataLoader(MyDataset(\"train\"), shuffle=True, batch_size=8, collate_fn=collate_fn)\n",
|
| 148 |
+
"val = DataLoader(MyDataset(\"val\"), shuffle=False, batch_size=8, collate_fn=collate_fn)\n",
|
| 149 |
+
"test = DataLoader(MyDataset(\"test\"), shuffle=False, batch_size=8, collate_fn=collate_fn)"
|
| 150 |
+
]
|
| 151 |
+
},
|
| 152 |
+
{
|
| 153 |
+
"cell_type": "markdown",
|
| 154 |
+
"id": "fe0aec7b-f61e-4b00-a90e-c1201dc1f84c",
|
| 155 |
+
"metadata": {},
|
| 156 |
+
"source": [
|
| 157 |
+
"## source training"
|
| 158 |
+
]
|
| 159 |
+
},
|
| 160 |
+
{
|
| 161 |
+
"cell_type": "code",
|
| 162 |
+
"execution_count": null,
|
| 163 |
+
"id": "cceecc94-f43a-4f62-8d45-926f2f02f36d",
|
| 164 |
+
"metadata": {
|
| 165 |
+
"tags": []
|
| 166 |
+
},
|
| 167 |
+
"outputs": [],
|
| 168 |
+
"source": [
|
| 169 |
+
"from torch.optim.adamw import AdamW\n",
|
| 170 |
+
"from transformers import get_cosine_schedule_with_warmup\n",
|
| 171 |
+
"from tqdm import tqdm\n",
|
| 172 |
+
"from sklearn.metrics import f1_score"
|
| 173 |
+
]
|
| 174 |
+
},
|
| 175 |
+
{
|
| 176 |
+
"cell_type": "code",
|
| 177 |
+
"execution_count": null,
|
| 178 |
+
"id": "eae5516b-73ab-44a8-a083-4e8de6127f30",
|
| 179 |
+
"metadata": {
|
| 180 |
+
"tags": []
|
| 181 |
+
},
|
| 182 |
+
"outputs": [],
|
| 183 |
+
"source": [
|
| 184 |
+
"POSITIVE_TOKEN_ID = tokenizer(\" positive\", add_special_tokens=False)[\"input_ids\"][0]\n",
|
| 185 |
+
"NEGATIVE_TOKEN_ID = tokenizer(\" negative\", add_special_tokens=False)[\"input_ids\"][0]\n",
|
| 186 |
+
"\n",
|
| 187 |
+
"\n",
|
| 188 |
+
"def classify(batch):\n",
|
| 189 |
+
" batch = send_to_device(batch)\n",
|
| 190 |
+
" # we pass labels here since we need to generate and peft doesn't support generation yet.\n",
|
| 191 |
+
" # No clue how to get around this\n",
|
| 192 |
+
" scores = model(**batch).logits\n",
|
| 193 |
+
" preds = []\n",
|
| 194 |
+
" for i in range(scores.shape[0]):\n",
|
| 195 |
+
" if scores[i, 0, POSITIVE_TOKEN_ID] > scores[i, 0, NEGATIVE_TOKEN_ID]:\n",
|
| 196 |
+
" preds.append(POSITIVE_TOKEN_ID)\n",
|
| 197 |
+
" else:\n",
|
| 198 |
+
" preds.append(NEGATIVE_TOKEN_ID)\n",
|
| 199 |
+
" return preds\n",
|
| 200 |
+
"\n",
|
| 201 |
+
"\n",
|
| 202 |
+
"@torch.inference_mode()\n",
|
| 203 |
+
"def evaluate(model, data):\n",
|
| 204 |
+
" loss = 0\n",
|
| 205 |
+
" preds = []\n",
|
| 206 |
+
" golds = []\n",
|
| 207 |
+
"\n",
|
| 208 |
+
" for batch in tqdm(data):\n",
|
| 209 |
+
" batch = send_to_device(batch)\n",
|
| 210 |
+
" loss += model(**batch).loss\n",
|
| 211 |
+
" golds.extend(batch[\"labels\"][:, 0].tolist())\n",
|
| 212 |
+
" preds.extend(classify(batch))\n",
|
| 213 |
+
"\n",
|
| 214 |
+
" return loss / len(val), f1_score(golds, preds, pos_label=POSITIVE_TOKEN_ID)\n",
|
| 215 |
+
"\n",
|
| 216 |
+
"\n",
|
| 217 |
+
"optimizer = AdamW(model.parameters(), lr=1e-4)\n",
|
| 218 |
+
"scheduler = get_cosine_schedule_with_warmup(optimizer, 200, len(train))\n",
|
| 219 |
+
"\n",
|
| 220 |
+
"n = 1000\n",
|
| 221 |
+
"step = 0\n",
|
| 222 |
+
"train_ = tqdm(train)\n",
|
| 223 |
+
"\n",
|
| 224 |
+
"val_loss, f1 = evaluate(model, val)\n",
|
| 225 |
+
"print(\n",
|
| 226 |
+
" f\"\"\"\n",
|
| 227 |
+
"before source training\n",
|
| 228 |
+
"val loss = {val_loss}\n",
|
| 229 |
+
"f1 = {f1}\"\"\"\n",
|
| 230 |
+
")\n",
|
| 231 |
+
"\n",
|
| 232 |
+
"for batch in train_:\n",
|
| 233 |
+
" if step % n == 0:\n",
|
| 234 |
+
" val_loss, f1 = evaluate(model, val)\n",
|
| 235 |
+
" print(\n",
|
| 236 |
+
" f\"\"\"\n",
|
| 237 |
+
"step = {step}\n",
|
| 238 |
+
"val loss = {val_loss}\n",
|
| 239 |
+
"f1 = {f1}\"\"\"\n",
|
| 240 |
+
" )\n",
|
| 241 |
+
" model.save_pretrained(f\"checkpoints_source/{step}\")\n",
|
| 242 |
+
"\n",
|
| 243 |
+
" step += 1\n",
|
| 244 |
+
" batch = send_to_device(batch)\n",
|
| 245 |
+
" loss = model(**batch).loss\n",
|
| 246 |
+
" loss.backward()\n",
|
| 247 |
+
" optimizer.step()\n",
|
| 248 |
+
" scheduler.step()\n",
|
| 249 |
+
" train_.set_postfix(train_loss=loss)"
|
| 250 |
+
]
|
| 251 |
+
},
|
| 252 |
+
{
|
| 253 |
+
"cell_type": "markdown",
|
| 254 |
+
"id": "74168ef3-66f3-41a7-a40b-7840b103fbf9",
|
| 255 |
+
"metadata": {},
|
| 256 |
+
"source": [
|
| 257 |
+
"## target training"
|
| 258 |
+
]
|
| 259 |
+
},
|
| 260 |
+
{
|
| 261 |
+
"cell_type": "code",
|
| 262 |
+
"execution_count": null,
|
| 263 |
+
"id": "b09fd456-163e-4dc1-b24d-f2d0d349036c",
|
| 264 |
+
"metadata": {
|
| 265 |
+
"tags": []
|
| 266 |
+
},
|
| 267 |
+
"outputs": [],
|
| 268 |
+
"source": [
|
| 269 |
+
"train = DataLoader(MyDataset(\"train\", \"target\"), shuffle=True, batch_size=8, collate_fn=collate_fn)\n",
|
| 270 |
+
"val = DataLoader(MyDataset(\"val\", \"target\"), shuffle=False, batch_size=8, collate_fn=collate_fn)\n",
|
| 271 |
+
"test = DataLoader(MyDataset(\"test\", \"target\"), shuffle=False, batch_size=8, collate_fn=collate_fn)"
|
| 272 |
+
]
|
| 273 |
+
},
|
| 274 |
+
{
|
| 275 |
+
"cell_type": "markdown",
|
| 276 |
+
"id": "4a539944-f16c-4c3f-bb4a-7b5d9a6042e2",
|
| 277 |
+
"metadata": {},
|
| 278 |
+
"source": [
|
| 279 |
+
"#### create a fresh model"
|
| 280 |
+
]
|
| 281 |
+
},
|
| 282 |
+
{
|
| 283 |
+
"cell_type": "code",
|
| 284 |
+
"execution_count": null,
|
| 285 |
+
"id": "5520d904-aa6c-4654-9335-ed4e7d76cba2",
|
| 286 |
+
"metadata": {
|
| 287 |
+
"tags": []
|
| 288 |
+
},
|
| 289 |
+
"outputs": [],
|
| 290 |
+
"source": [
|
| 291 |
+
"peft_config = MultitaskPromptTuningConfig(\n",
|
| 292 |
+
" tokenizer_name_or_path=model_name,\n",
|
| 293 |
+
" num_tasks=1,\n",
|
| 294 |
+
" task_type=TaskType.SEQ_2_SEQ_LM,\n",
|
| 295 |
+
" prompt_tuning_init=MultitaskPromptTuningInit.EXACT_SOURCE_TASK,\n",
|
| 296 |
+
" prompt_tuning_init_state_dict_path=\"checkpoints_source/50000/adapter_model.bin\",\n",
|
| 297 |
+
" num_virtual_tokens=50,\n",
|
| 298 |
+
" num_transformer_submodules=1,\n",
|
| 299 |
+
")\n",
|
| 300 |
+
"\n",
|
| 301 |
+
"tokenizer = AutoTokenizer.from_pretrained(model_name)\n",
|
| 302 |
+
"model = AutoModelForSeq2SeqLM.from_pretrained(model_name)\n",
|
| 303 |
+
"model = get_peft_model(model, peft_config)\n",
|
| 304 |
+
"\n",
|
| 305 |
+
"model = model.cuda()"
|
| 306 |
+
]
|
| 307 |
+
},
|
| 308 |
+
{
|
| 309 |
+
"cell_type": "code",
|
| 310 |
+
"execution_count": null,
|
| 311 |
+
"id": "dfa39c2d-d1c5-4ed4-90f8-26e8e324371c",
|
| 312 |
+
"metadata": {
|
| 313 |
+
"tags": []
|
| 314 |
+
},
|
| 315 |
+
"outputs": [],
|
| 316 |
+
"source": [
|
| 317 |
+
"optimizer = AdamW(model.parameters(), lr=1e-4)\n",
|
| 318 |
+
"scheduler = get_cosine_schedule_with_warmup(optimizer, 200, len(train))\n",
|
| 319 |
+
"\n",
|
| 320 |
+
"n = 1000\n",
|
| 321 |
+
"step = 0\n",
|
| 322 |
+
"train_ = tqdm(train)\n",
|
| 323 |
+
"\n",
|
| 324 |
+
"val_loss, f1 = evaluate(model, val)\n",
|
| 325 |
+
"print(\n",
|
| 326 |
+
" f\"\"\"\n",
|
| 327 |
+
"before target training\n",
|
| 328 |
+
"val loss = {val_loss}\n",
|
| 329 |
+
"f1 = {f1}\"\"\"\n",
|
| 330 |
+
")\n",
|
| 331 |
+
"\n",
|
| 332 |
+
"for batch in train_:\n",
|
| 333 |
+
" if step % n == 0:\n",
|
| 334 |
+
" val_loss, f1 = evaluate(model, val)\n",
|
| 335 |
+
" print(\n",
|
| 336 |
+
" f\"\"\"\n",
|
| 337 |
+
"step = {step}\n",
|
| 338 |
+
"val loss = {val_loss}\n",
|
| 339 |
+
"f1 = {f1}\"\"\"\n",
|
| 340 |
+
" )\n",
|
| 341 |
+
" model.save_pretrained(f\"checkpoints_target/{step}\")\n",
|
| 342 |
+
"\n",
|
| 343 |
+
" step += 1\n",
|
| 344 |
+
" batch = send_to_device(batch)\n",
|
| 345 |
+
" loss = model(**batch).loss\n",
|
| 346 |
+
" loss.backward()\n",
|
| 347 |
+
" optimizer.step()\n",
|
| 348 |
+
" scheduler.step()\n",
|
| 349 |
+
" train_.set_postfix(train_loss=loss)"
|
| 350 |
+
]
|
| 351 |
+
},
|
| 352 |
+
{
|
| 353 |
+
"cell_type": "code",
|
| 354 |
+
"execution_count": null,
|
| 355 |
+
"id": "b6a6eeda-1e09-49a6-8845-cd96c8573145",
|
| 356 |
+
"metadata": {
|
| 357 |
+
"tags": []
|
| 358 |
+
},
|
| 359 |
+
"outputs": [],
|
| 360 |
+
"source": [
|
| 361 |
+
"# load last checkpoint for now\n",
|
| 362 |
+
"from peft import set_peft_model_state_dict\n",
|
| 363 |
+
"\n",
|
| 364 |
+
"sd_6000 = torch.load(\"checkpoints_target/6000/adapter_model.bin\")\n",
|
| 365 |
+
"set_peft_model_state_dict(model, sd_6000)\n",
|
| 366 |
+
"\n",
|
| 367 |
+
"# evaluate val\n",
|
| 368 |
+
"val_loss, f1 = evaluate(model, val)\n",
|
| 369 |
+
"print(\n",
|
| 370 |
+
" f\"\"\"\n",
|
| 371 |
+
"final\n",
|
| 372 |
+
"val loss = {val_loss}\n",
|
| 373 |
+
"f1 = {f1}\"\"\"\n",
|
| 374 |
+
")\n",
|
| 375 |
+
"\n",
|
| 376 |
+
"# evaluate test\n",
|
| 377 |
+
"test_loss, f1 = evaluate(model, test)\n",
|
| 378 |
+
"print(\n",
|
| 379 |
+
" f\"\"\"\n",
|
| 380 |
+
"final\n",
|
| 381 |
+
"test loss = {test_loss}\n",
|
| 382 |
+
"f1 = {f1}\"\"\"\n",
|
| 383 |
+
")"
|
| 384 |
+
]
|
| 385 |
+
}
|
| 386 |
+
],
|
| 387 |
+
"metadata": {
|
| 388 |
+
"kernelspec": {
|
| 389 |
+
"display_name": "Python 3 (ipykernel)",
|
| 390 |
+
"language": "python",
|
| 391 |
+
"name": "python3"
|
| 392 |
+
},
|
| 393 |
+
"language_info": {
|
| 394 |
+
"codemirror_mode": {
|
| 395 |
+
"name": "ipython",
|
| 396 |
+
"version": 3
|
| 397 |
+
},
|
| 398 |
+
"file_extension": ".py",
|
| 399 |
+
"mimetype": "text/x-python",
|
| 400 |
+
"name": "python",
|
| 401 |
+
"nbconvert_exporter": "python",
|
| 402 |
+
"pygments_lexer": "ipython3",
|
| 403 |
+
"version": "3.9.13"
|
| 404 |
+
}
|
| 405 |
+
},
|
| 406 |
+
"nbformat": 4,
|
| 407 |
+
"nbformat_minor": 5
|
| 408 |
+
}
|
peft_ia3_seq2seq.ipynb
ADDED
|
@@ -0,0 +1,2711 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"cells": [
|
| 3 |
+
{
|
| 4 |
+
"cell_type": "code",
|
| 5 |
+
"execution_count": 12,
|
| 6 |
+
"metadata": {
|
| 7 |
+
"id": "5f93b7d1"
|
| 8 |
+
},
|
| 9 |
+
"outputs": [],
|
| 10 |
+
"source": [
|
| 11 |
+
"from transformers import AutoModelForSeq2SeqLM\n",
|
| 12 |
+
"import peft\n",
|
| 13 |
+
"from peft import get_peft_config, get_peft_model, get_peft_model_state_dict, IA3Config, TaskType\n",
|
| 14 |
+
"import torch\n",
|
| 15 |
+
"from datasets import load_dataset\n",
|
| 16 |
+
"import os\n",
|
| 17 |
+
"\n",
|
| 18 |
+
"os.environ[\"TOKENIZERS_PARALLELISM\"] = \"false\"\n",
|
| 19 |
+
"from transformers import AutoTokenizer\n",
|
| 20 |
+
"from torch.utils.data import DataLoader\n",
|
| 21 |
+
"from transformers import default_data_collator, get_linear_schedule_with_warmup\n",
|
| 22 |
+
"from tqdm import tqdm\n",
|
| 23 |
+
"from datasets import load_dataset\n",
|
| 24 |
+
"\n",
|
| 25 |
+
"device = \"cuda\"\n",
|
| 26 |
+
"model_name_or_path = \"bigscience/mt0-large\"\n",
|
| 27 |
+
"tokenizer_name_or_path = \"bigscience/mt0-large\"\n",
|
| 28 |
+
"\n",
|
| 29 |
+
"checkpoint_name = \"financial_sentiment_analysis_ia3_v1.pt\"\n",
|
| 30 |
+
"text_column = \"sentence\"\n",
|
| 31 |
+
"label_column = \"text_label\"\n",
|
| 32 |
+
"max_length = 128\n",
|
| 33 |
+
"lr = 8e-3\n",
|
| 34 |
+
"num_epochs = 3\n",
|
| 35 |
+
"batch_size = 8"
|
| 36 |
+
]
|
| 37 |
+
},
|
| 38 |
+
{
|
| 39 |
+
"cell_type": "code",
|
| 40 |
+
"execution_count": 13,
|
| 41 |
+
"metadata": {
|
| 42 |
+
"colab": {
|
| 43 |
+
"base_uri": "https://localhost:8080/"
|
| 44 |
+
},
|
| 45 |
+
"id": "b9e6368c",
|
| 46 |
+
"outputId": "fc2888a8-4fe9-4d61-dd2d-753e751e1416"
|
| 47 |
+
},
|
| 48 |
+
"outputs": [
|
| 49 |
+
{
|
| 50 |
+
"data": {
|
| 51 |
+
"text/plain": [
|
| 52 |
+
"<module 'peft' from '/usr/local/lib/python3.10/dist-packages/peft/__init__.py'>"
|
| 53 |
+
]
|
| 54 |
+
},
|
| 55 |
+
"execution_count": 13,
|
| 56 |
+
"metadata": {},
|
| 57 |
+
"output_type": "execute_result"
|
| 58 |
+
}
|
| 59 |
+
],
|
| 60 |
+
"source": [
|
| 61 |
+
"import importlib\n",
|
| 62 |
+
"\n",
|
| 63 |
+
"importlib.reload(peft)"
|
| 64 |
+
]
|
| 65 |
+
},
|
| 66 |
+
{
|
| 67 |
+
"cell_type": "code",
|
| 68 |
+
"execution_count": 14,
|
| 69 |
+
"metadata": {
|
| 70 |
+
"id": "8d0850ac"
|
| 71 |
+
},
|
| 72 |
+
"outputs": [],
|
| 73 |
+
"source": [
|
| 74 |
+
"# creating model\n",
|
| 75 |
+
"peft_config = IA3Config(task_type=TaskType.SEQ_2_SEQ_LM, inference_mode=False, feedforward_modules=[])\n",
|
| 76 |
+
"\n",
|
| 77 |
+
"model = AutoModelForSeq2SeqLM.from_pretrained(model_name_or_path)"
|
| 78 |
+
]
|
| 79 |
+
},
|
| 80 |
+
{
|
| 81 |
+
"cell_type": "code",
|
| 82 |
+
"execution_count": 15,
|
| 83 |
+
"metadata": {
|
| 84 |
+
"colab": {
|
| 85 |
+
"base_uri": "https://localhost:8080/"
|
| 86 |
+
},
|
| 87 |
+
"id": "e10c3831",
|
| 88 |
+
"outputId": "e69c5e07-ae58-446c-8301-e99ac6b85d62"
|
| 89 |
+
},
|
| 90 |
+
"outputs": [
|
| 91 |
+
{
|
| 92 |
+
"data": {
|
| 93 |
+
"text/plain": [
|
| 94 |
+
"MT5ForConditionalGeneration(\n",
|
| 95 |
+
" (shared): Embedding(250112, 1024)\n",
|
| 96 |
+
" (encoder): MT5Stack(\n",
|
| 97 |
+
" (embed_tokens): Embedding(250112, 1024)\n",
|
| 98 |
+
" (block): ModuleList(\n",
|
| 99 |
+
" (0): MT5Block(\n",
|
| 100 |
+
" (layer): ModuleList(\n",
|
| 101 |
+
" (0): MT5LayerSelfAttention(\n",
|
| 102 |
+
" (SelfAttention): MT5Attention(\n",
|
| 103 |
+
" (q): Linear(in_features=1024, out_features=1024, bias=False)\n",
|
| 104 |
+
" (k): Linear(in_features=1024, out_features=1024, bias=False)\n",
|
| 105 |
+
" (v): Linear(in_features=1024, out_features=1024, bias=False)\n",
|
| 106 |
+
" (o): Linear(in_features=1024, out_features=1024, bias=False)\n",
|
| 107 |
+
" (relative_attention_bias): Embedding(32, 16)\n",
|
| 108 |
+
" )\n",
|
| 109 |
+
" (layer_norm): MT5LayerNorm()\n",
|
| 110 |
+
" (dropout): Dropout(p=0.1, inplace=False)\n",
|
| 111 |
+
" )\n",
|
| 112 |
+
" (1): MT5LayerFF(\n",
|
| 113 |
+
" (DenseReluDense): MT5DenseGatedActDense(\n",
|
| 114 |
+
" (wi_0): Linear(in_features=1024, out_features=2816, bias=False)\n",
|
| 115 |
+
" (wi_1): Linear(in_features=1024, out_features=2816, bias=False)\n",
|
| 116 |
+
" (wo): Linear(in_features=2816, out_features=1024, bias=False)\n",
|
| 117 |
+
" (dropout): Dropout(p=0.1, inplace=False)\n",
|
| 118 |
+
" (act): NewGELUActivation()\n",
|
| 119 |
+
" )\n",
|
| 120 |
+
" (layer_norm): MT5LayerNorm()\n",
|
| 121 |
+
" (dropout): Dropout(p=0.1, inplace=False)\n",
|
| 122 |
+
" )\n",
|
| 123 |
+
" )\n",
|
| 124 |
+
" )\n",
|
| 125 |
+
" (1-23): 23 x MT5Block(\n",
|
| 126 |
+
" (layer): ModuleList(\n",
|
| 127 |
+
" (0): MT5LayerSelfAttention(\n",
|
| 128 |
+
" (SelfAttention): MT5Attention(\n",
|
| 129 |
+
" (q): Linear(in_features=1024, out_features=1024, bias=False)\n",
|
| 130 |
+
" (k): Linear(in_features=1024, out_features=1024, bias=False)\n",
|
| 131 |
+
" (v): Linear(in_features=1024, out_features=1024, bias=False)\n",
|
| 132 |
+
" (o): Linear(in_features=1024, out_features=1024, bias=False)\n",
|
| 133 |
+
" )\n",
|
| 134 |
+
" (layer_norm): MT5LayerNorm()\n",
|
| 135 |
+
" (dropout): Dropout(p=0.1, inplace=False)\n",
|
| 136 |
+
" )\n",
|
| 137 |
+
" (1): MT5LayerFF(\n",
|
| 138 |
+
" (DenseReluDense): MT5DenseGatedActDense(\n",
|
| 139 |
+
" (wi_0): Linear(in_features=1024, out_features=2816, bias=False)\n",
|
| 140 |
+
" (wi_1): Linear(in_features=1024, out_features=2816, bias=False)\n",
|
| 141 |
+
" (wo): Linear(in_features=2816, out_features=1024, bias=False)\n",
|
| 142 |
+
" (dropout): Dropout(p=0.1, inplace=False)\n",
|
| 143 |
+
" (act): NewGELUActivation()\n",
|
| 144 |
+
" )\n",
|
| 145 |
+
" (layer_norm): MT5LayerNorm()\n",
|
| 146 |
+
" (dropout): Dropout(p=0.1, inplace=False)\n",
|
| 147 |
+
" )\n",
|
| 148 |
+
" )\n",
|
| 149 |
+
" )\n",
|
| 150 |
+
" )\n",
|
| 151 |
+
" (final_layer_norm): MT5LayerNorm()\n",
|
| 152 |
+
" (dropout): Dropout(p=0.1, inplace=False)\n",
|
| 153 |
+
" )\n",
|
| 154 |
+
" (decoder): MT5Stack(\n",
|
| 155 |
+
" (embed_tokens): Embedding(250112, 1024)\n",
|
| 156 |
+
" (block): ModuleList(\n",
|
| 157 |
+
" (0): MT5Block(\n",
|
| 158 |
+
" (layer): ModuleList(\n",
|
| 159 |
+
" (0): MT5LayerSelfAttention(\n",
|
| 160 |
+
" (SelfAttention): MT5Attention(\n",
|
| 161 |
+
" (q): Linear(in_features=1024, out_features=1024, bias=False)\n",
|
| 162 |
+
" (k): Linear(in_features=1024, out_features=1024, bias=False)\n",
|
| 163 |
+
" (v): Linear(in_features=1024, out_features=1024, bias=False)\n",
|
| 164 |
+
" (o): Linear(in_features=1024, out_features=1024, bias=False)\n",
|
| 165 |
+
" (relative_attention_bias): Embedding(32, 16)\n",
|
| 166 |
+
" )\n",
|
| 167 |
+
" (layer_norm): MT5LayerNorm()\n",
|
| 168 |
+
" (dropout): Dropout(p=0.1, inplace=False)\n",
|
| 169 |
+
" )\n",
|
| 170 |
+
" (1): MT5LayerCrossAttention(\n",
|
| 171 |
+
" (EncDecAttention): MT5Attention(\n",
|
| 172 |
+
" (q): Linear(in_features=1024, out_features=1024, bias=False)\n",
|
| 173 |
+
" (k): Linear(in_features=1024, out_features=1024, bias=False)\n",
|
| 174 |
+
" (v): Linear(in_features=1024, out_features=1024, bias=False)\n",
|
| 175 |
+
" (o): Linear(in_features=1024, out_features=1024, bias=False)\n",
|
| 176 |
+
" )\n",
|
| 177 |
+
" (layer_norm): MT5LayerNorm()\n",
|
| 178 |
+
" (dropout): Dropout(p=0.1, inplace=False)\n",
|
| 179 |
+
" )\n",
|
| 180 |
+
" (2): MT5LayerFF(\n",
|
| 181 |
+
" (DenseReluDense): MT5DenseGatedActDense(\n",
|
| 182 |
+
" (wi_0): Linear(in_features=1024, out_features=2816, bias=False)\n",
|
| 183 |
+
" (wi_1): Linear(in_features=1024, out_features=2816, bias=False)\n",
|
| 184 |
+
" (wo): Linear(in_features=2816, out_features=1024, bias=False)\n",
|
| 185 |
+
" (dropout): Dropout(p=0.1, inplace=False)\n",
|
| 186 |
+
" (act): NewGELUActivation()\n",
|
| 187 |
+
" )\n",
|
| 188 |
+
" (layer_norm): MT5LayerNorm()\n",
|
| 189 |
+
" (dropout): Dropout(p=0.1, inplace=False)\n",
|
| 190 |
+
" )\n",
|
| 191 |
+
" )\n",
|
| 192 |
+
" )\n",
|
| 193 |
+
" (1-23): 23 x MT5Block(\n",
|
| 194 |
+
" (layer): ModuleList(\n",
|
| 195 |
+
" (0): MT5LayerSelfAttention(\n",
|
| 196 |
+
" (SelfAttention): MT5Attention(\n",
|
| 197 |
+
" (q): Linear(in_features=1024, out_features=1024, bias=False)\n",
|
| 198 |
+
" (k): Linear(in_features=1024, out_features=1024, bias=False)\n",
|
| 199 |
+
" (v): Linear(in_features=1024, out_features=1024, bias=False)\n",
|
| 200 |
+
" (o): Linear(in_features=1024, out_features=1024, bias=False)\n",
|
| 201 |
+
" )\n",
|
| 202 |
+
" (layer_norm): MT5LayerNorm()\n",
|
| 203 |
+
" (dropout): Dropout(p=0.1, inplace=False)\n",
|
| 204 |
+
" )\n",
|
| 205 |
+
" (1): MT5LayerCrossAttention(\n",
|
| 206 |
+
" (EncDecAttention): MT5Attention(\n",
|
| 207 |
+
" (q): Linear(in_features=1024, out_features=1024, bias=False)\n",
|
| 208 |
+
" (k): Linear(in_features=1024, out_features=1024, bias=False)\n",
|
| 209 |
+
" (v): Linear(in_features=1024, out_features=1024, bias=False)\n",
|
| 210 |
+
" (o): Linear(in_features=1024, out_features=1024, bias=False)\n",
|
| 211 |
+
" )\n",
|
| 212 |
+
" (layer_norm): MT5LayerNorm()\n",
|
| 213 |
+
" (dropout): Dropout(p=0.1, inplace=False)\n",
|
| 214 |
+
" )\n",
|
| 215 |
+
" (2): MT5LayerFF(\n",
|
| 216 |
+
" (DenseReluDense): MT5DenseGatedActDense(\n",
|
| 217 |
+
" (wi_0): Linear(in_features=1024, out_features=2816, bias=False)\n",
|
| 218 |
+
" (wi_1): Linear(in_features=1024, out_features=2816, bias=False)\n",
|
| 219 |
+
" (wo): Linear(in_features=2816, out_features=1024, bias=False)\n",
|
| 220 |
+
" (dropout): Dropout(p=0.1, inplace=False)\n",
|
| 221 |
+
" (act): NewGELUActivation()\n",
|
| 222 |
+
" )\n",
|
| 223 |
+
" (layer_norm): MT5LayerNorm()\n",
|
| 224 |
+
" (dropout): Dropout(p=0.1, inplace=False)\n",
|
| 225 |
+
" )\n",
|
| 226 |
+
" )\n",
|
| 227 |
+
" )\n",
|
| 228 |
+
" )\n",
|
| 229 |
+
" (final_layer_norm): MT5LayerNorm()\n",
|
| 230 |
+
" (dropout): Dropout(p=0.1, inplace=False)\n",
|
| 231 |
+
" )\n",
|
| 232 |
+
" (lm_head): Linear(in_features=1024, out_features=250112, bias=False)\n",
|
| 233 |
+
")"
|
| 234 |
+
]
|
| 235 |
+
},
|
| 236 |
+
"execution_count": 15,
|
| 237 |
+
"metadata": {},
|
| 238 |
+
"output_type": "execute_result"
|
| 239 |
+
}
|
| 240 |
+
],
|
| 241 |
+
"source": [
|
| 242 |
+
"model"
|
| 243 |
+
]
|
| 244 |
+
},
|
| 245 |
+
{
|
| 246 |
+
"cell_type": "code",
|
| 247 |
+
"execution_count": 16,
|
| 248 |
+
"metadata": {
|
| 249 |
+
"colab": {
|
| 250 |
+
"base_uri": "https://localhost:8080/"
|
| 251 |
+
},
|
| 252 |
+
"id": "05978e96",
|
| 253 |
+
"outputId": "ea9b7d40-010f-4df0-ec64-a7146a5f8b08"
|
| 254 |
+
},
|
| 255 |
+
"outputs": [
|
| 256 |
+
{
|
| 257 |
+
"name": "stdout",
|
| 258 |
+
"output_type": "stream",
|
| 259 |
+
"text": [
|
| 260 |
+
"trainable params: 282,624 || all params: 1,229,863,936 || trainable%: 0.022980103060766553\n"
|
| 261 |
+
]
|
| 262 |
+
},
|
| 263 |
+
{
|
| 264 |
+
"data": {
|
| 265 |
+
"text/plain": [
|
| 266 |
+
"PeftModelForSeq2SeqLM(\n",
|
| 267 |
+
" (base_model): IA3Model(\n",
|
| 268 |
+
" (model): MT5ForConditionalGeneration(\n",
|
| 269 |
+
" (shared): Embedding(250112, 1024)\n",
|
| 270 |
+
" (encoder): MT5Stack(\n",
|
| 271 |
+
" (embed_tokens): Embedding(250112, 1024)\n",
|
| 272 |
+
" (block): ModuleList(\n",
|
| 273 |
+
" (0): MT5Block(\n",
|
| 274 |
+
" (layer): ModuleList(\n",
|
| 275 |
+
" (0): MT5LayerSelfAttention(\n",
|
| 276 |
+
" (SelfAttention): MT5Attention(\n",
|
| 277 |
+
" (q): Linear(in_features=1024, out_features=1024, bias=False)\n",
|
| 278 |
+
" (k): Linear(\n",
|
| 279 |
+
" in_features=1024, out_features=1024, bias=False\n",
|
| 280 |
+
" (ia3_l): ParameterDict( (default): Parameter containing: [torch.FloatTensor of size 1024x1])\n",
|
| 281 |
+
" )\n",
|
| 282 |
+
" (v): Linear(\n",
|
| 283 |
+
" in_features=1024, out_features=1024, bias=False\n",
|
| 284 |
+
" (ia3_l): ParameterDict( (default): Parameter containing: [torch.FloatTensor of size 1024x1])\n",
|
| 285 |
+
" )\n",
|
| 286 |
+
" (o): Linear(in_features=1024, out_features=1024, bias=False)\n",
|
| 287 |
+
" (relative_attention_bias): Embedding(32, 16)\n",
|
| 288 |
+
" )\n",
|
| 289 |
+
" (layer_norm): MT5LayerNorm()\n",
|
| 290 |
+
" (dropout): Dropout(p=0.1, inplace=False)\n",
|
| 291 |
+
" )\n",
|
| 292 |
+
" (1): MT5LayerFF(\n",
|
| 293 |
+
" (DenseReluDense): MT5DenseGatedActDense(\n",
|
| 294 |
+
" (wi_0): Linear(in_features=1024, out_features=2816, bias=False)\n",
|
| 295 |
+
" (wi_1): Linear(\n",
|
| 296 |
+
" in_features=1024, out_features=2816, bias=False\n",
|
| 297 |
+
" (ia3_l): ParameterDict( (default): Parameter containing: [torch.FloatTensor of size 2816x1])\n",
|
| 298 |
+
" )\n",
|
| 299 |
+
" (wo): Linear(in_features=2816, out_features=1024, bias=False)\n",
|
| 300 |
+
" (dropout): Dropout(p=0.1, inplace=False)\n",
|
| 301 |
+
" (act): NewGELUActivation()\n",
|
| 302 |
+
" )\n",
|
| 303 |
+
" (layer_norm): MT5LayerNorm()\n",
|
| 304 |
+
" (dropout): Dropout(p=0.1, inplace=False)\n",
|
| 305 |
+
" )\n",
|
| 306 |
+
" )\n",
|
| 307 |
+
" )\n",
|
| 308 |
+
" (1-23): 23 x MT5Block(\n",
|
| 309 |
+
" (layer): ModuleList(\n",
|
| 310 |
+
" (0): MT5LayerSelfAttention(\n",
|
| 311 |
+
" (SelfAttention): MT5Attention(\n",
|
| 312 |
+
" (q): Linear(in_features=1024, out_features=1024, bias=False)\n",
|
| 313 |
+
" (k): Linear(\n",
|
| 314 |
+
" in_features=1024, out_features=1024, bias=False\n",
|
| 315 |
+
" (ia3_l): ParameterDict( (default): Parameter containing: [torch.FloatTensor of size 1024x1])\n",
|
| 316 |
+
" )\n",
|
| 317 |
+
" (v): Linear(\n",
|
| 318 |
+
" in_features=1024, out_features=1024, bias=False\n",
|
| 319 |
+
" (ia3_l): ParameterDict( (default): Parameter containing: [torch.FloatTensor of size 1024x1])\n",
|
| 320 |
+
" )\n",
|
| 321 |
+
" (o): Linear(in_features=1024, out_features=1024, bias=False)\n",
|
| 322 |
+
" )\n",
|
| 323 |
+
" (layer_norm): MT5LayerNorm()\n",
|
| 324 |
+
" (dropout): Dropout(p=0.1, inplace=False)\n",
|
| 325 |
+
" )\n",
|
| 326 |
+
" (1): MT5LayerFF(\n",
|
| 327 |
+
" (DenseReluDense): MT5DenseGatedActDense(\n",
|
| 328 |
+
" (wi_0): Linear(in_features=1024, out_features=2816, bias=False)\n",
|
| 329 |
+
" (wi_1): Linear(\n",
|
| 330 |
+
" in_features=1024, out_features=2816, bias=False\n",
|
| 331 |
+
" (ia3_l): ParameterDict( (default): Parameter containing: [torch.FloatTensor of size 2816x1])\n",
|
| 332 |
+
" )\n",
|
| 333 |
+
" (wo): Linear(in_features=2816, out_features=1024, bias=False)\n",
|
| 334 |
+
" (dropout): Dropout(p=0.1, inplace=False)\n",
|
| 335 |
+
" (act): NewGELUActivation()\n",
|
| 336 |
+
" )\n",
|
| 337 |
+
" (layer_norm): MT5LayerNorm()\n",
|
| 338 |
+
" (dropout): Dropout(p=0.1, inplace=False)\n",
|
| 339 |
+
" )\n",
|
| 340 |
+
" )\n",
|
| 341 |
+
" )\n",
|
| 342 |
+
" )\n",
|
| 343 |
+
" (final_layer_norm): MT5LayerNorm()\n",
|
| 344 |
+
" (dropout): Dropout(p=0.1, inplace=False)\n",
|
| 345 |
+
" )\n",
|
| 346 |
+
" (decoder): MT5Stack(\n",
|
| 347 |
+
" (embed_tokens): Embedding(250112, 1024)\n",
|
| 348 |
+
" (block): ModuleList(\n",
|
| 349 |
+
" (0): MT5Block(\n",
|
| 350 |
+
" (layer): ModuleList(\n",
|
| 351 |
+
" (0): MT5LayerSelfAttention(\n",
|
| 352 |
+
" (SelfAttention): MT5Attention(\n",
|
| 353 |
+
" (q): Linear(in_features=1024, out_features=1024, bias=False)\n",
|
| 354 |
+
" (k): Linear(\n",
|
| 355 |
+
" in_features=1024, out_features=1024, bias=False\n",
|
| 356 |
+
" (ia3_l): ParameterDict( (default): Parameter containing: [torch.FloatTensor of size 1024x1])\n",
|
| 357 |
+
" )\n",
|
| 358 |
+
" (v): Linear(\n",
|
| 359 |
+
" in_features=1024, out_features=1024, bias=False\n",
|
| 360 |
+
" (ia3_l): ParameterDict( (default): Parameter containing: [torch.FloatTensor of size 1024x1])\n",
|
| 361 |
+
" )\n",
|
| 362 |
+
" (o): Linear(in_features=1024, out_features=1024, bias=False)\n",
|
| 363 |
+
" (relative_attention_bias): Embedding(32, 16)\n",
|
| 364 |
+
" )\n",
|
| 365 |
+
" (layer_norm): MT5LayerNorm()\n",
|
| 366 |
+
" (dropout): Dropout(p=0.1, inplace=False)\n",
|
| 367 |
+
" )\n",
|
| 368 |
+
" (1): MT5LayerCrossAttention(\n",
|
| 369 |
+
" (EncDecAttention): MT5Attention(\n",
|
| 370 |
+
" (q): Linear(in_features=1024, out_features=1024, bias=False)\n",
|
| 371 |
+
" (k): Linear(\n",
|
| 372 |
+
" in_features=1024, out_features=1024, bias=False\n",
|
| 373 |
+
" (ia3_l): ParameterDict( (default): Parameter containing: [torch.FloatTensor of size 1024x1])\n",
|
| 374 |
+
" )\n",
|
| 375 |
+
" (v): Linear(\n",
|
| 376 |
+
" in_features=1024, out_features=1024, bias=False\n",
|
| 377 |
+
" (ia3_l): ParameterDict( (default): Parameter containing: [torch.FloatTensor of size 1024x1])\n",
|
| 378 |
+
" )\n",
|
| 379 |
+
" (o): Linear(in_features=1024, out_features=1024, bias=False)\n",
|
| 380 |
+
" )\n",
|
| 381 |
+
" (layer_norm): MT5LayerNorm()\n",
|
| 382 |
+
" (dropout): Dropout(p=0.1, inplace=False)\n",
|
| 383 |
+
" )\n",
|
| 384 |
+
" (2): MT5LayerFF(\n",
|
| 385 |
+
" (DenseReluDense): MT5DenseGatedActDense(\n",
|
| 386 |
+
" (wi_0): Linear(in_features=1024, out_features=2816, bias=False)\n",
|
| 387 |
+
" (wi_1): Linear(\n",
|
| 388 |
+
" in_features=1024, out_features=2816, bias=False\n",
|
| 389 |
+
" (ia3_l): ParameterDict( (default): Parameter containing: [torch.FloatTensor of size 2816x1])\n",
|
| 390 |
+
" )\n",
|
| 391 |
+
" (wo): Linear(in_features=2816, out_features=1024, bias=False)\n",
|
| 392 |
+
" (dropout): Dropout(p=0.1, inplace=False)\n",
|
| 393 |
+
" (act): NewGELUActivation()\n",
|
| 394 |
+
" )\n",
|
| 395 |
+
" (layer_norm): MT5LayerNorm()\n",
|
| 396 |
+
" (dropout): Dropout(p=0.1, inplace=False)\n",
|
| 397 |
+
" )\n",
|
| 398 |
+
" )\n",
|
| 399 |
+
" )\n",
|
| 400 |
+
" (1-23): 23 x MT5Block(\n",
|
| 401 |
+
" (layer): ModuleList(\n",
|
| 402 |
+
" (0): MT5LayerSelfAttention(\n",
|
| 403 |
+
" (SelfAttention): MT5Attention(\n",
|
| 404 |
+
" (q): Linear(in_features=1024, out_features=1024, bias=False)\n",
|
| 405 |
+
" (k): Linear(\n",
|
| 406 |
+
" in_features=1024, out_features=1024, bias=False\n",
|
| 407 |
+
" (ia3_l): ParameterDict( (default): Parameter containing: [torch.FloatTensor of size 1024x1])\n",
|
| 408 |
+
" )\n",
|
| 409 |
+
" (v): Linear(\n",
|
| 410 |
+
" in_features=1024, out_features=1024, bias=False\n",
|
| 411 |
+
" (ia3_l): ParameterDict( (default): Parameter containing: [torch.FloatTensor of size 1024x1])\n",
|
| 412 |
+
" )\n",
|
| 413 |
+
" (o): Linear(in_features=1024, out_features=1024, bias=False)\n",
|
| 414 |
+
" )\n",
|
| 415 |
+
" (layer_norm): MT5LayerNorm()\n",
|
| 416 |
+
" (dropout): Dropout(p=0.1, inplace=False)\n",
|
| 417 |
+
" )\n",
|
| 418 |
+
" (1): MT5LayerCrossAttention(\n",
|
| 419 |
+
" (EncDecAttention): MT5Attention(\n",
|
| 420 |
+
" (q): Linear(in_features=1024, out_features=1024, bias=False)\n",
|
| 421 |
+
" (k): Linear(\n",
|
| 422 |
+
" in_features=1024, out_features=1024, bias=False\n",
|
| 423 |
+
" (ia3_l): ParameterDict( (default): Parameter containing: [torch.FloatTensor of size 1024x1])\n",
|
| 424 |
+
" )\n",
|
| 425 |
+
" (v): Linear(\n",
|
| 426 |
+
" in_features=1024, out_features=1024, bias=False\n",
|
| 427 |
+
" (ia3_l): ParameterDict( (default): Parameter containing: [torch.FloatTensor of size 1024x1])\n",
|
| 428 |
+
" )\n",
|
| 429 |
+
" (o): Linear(in_features=1024, out_features=1024, bias=False)\n",
|
| 430 |
+
" )\n",
|
| 431 |
+
" (layer_norm): MT5LayerNorm()\n",
|
| 432 |
+
" (dropout): Dropout(p=0.1, inplace=False)\n",
|
| 433 |
+
" )\n",
|
| 434 |
+
" (2): MT5LayerFF(\n",
|
| 435 |
+
" (DenseReluDense): MT5DenseGatedActDense(\n",
|
| 436 |
+
" (wi_0): Linear(in_features=1024, out_features=2816, bias=False)\n",
|
| 437 |
+
" (wi_1): Linear(\n",
|
| 438 |
+
" in_features=1024, out_features=2816, bias=False\n",
|
| 439 |
+
" (ia3_l): ParameterDict( (default): Parameter containing: [torch.FloatTensor of size 2816x1])\n",
|
| 440 |
+
" )\n",
|
| 441 |
+
" (wo): Linear(in_features=2816, out_features=1024, bias=False)\n",
|
| 442 |
+
" (dropout): Dropout(p=0.1, inplace=False)\n",
|
| 443 |
+
" (act): NewGELUActivation()\n",
|
| 444 |
+
" )\n",
|
| 445 |
+
" (layer_norm): MT5LayerNorm()\n",
|
| 446 |
+
" (dropout): Dropout(p=0.1, inplace=False)\n",
|
| 447 |
+
" )\n",
|
| 448 |
+
" )\n",
|
| 449 |
+
" )\n",
|
| 450 |
+
" )\n",
|
| 451 |
+
" (final_layer_norm): MT5LayerNorm()\n",
|
| 452 |
+
" (dropout): Dropout(p=0.1, inplace=False)\n",
|
| 453 |
+
" )\n",
|
| 454 |
+
" (lm_head): Linear(in_features=1024, out_features=250112, bias=False)\n",
|
| 455 |
+
" )\n",
|
| 456 |
+
" )\n",
|
| 457 |
+
")"
|
| 458 |
+
]
|
| 459 |
+
},
|
| 460 |
+
"execution_count": 16,
|
| 461 |
+
"metadata": {},
|
| 462 |
+
"output_type": "execute_result"
|
| 463 |
+
}
|
| 464 |
+
],
|
| 465 |
+
"source": [
|
| 466 |
+
"model = get_peft_model(model, peft_config)\n",
|
| 467 |
+
"model.print_trainable_parameters()\n",
|
| 468 |
+
"model"
|
| 469 |
+
]
|
| 470 |
+
},
|
| 471 |
+
{
|
| 472 |
+
"cell_type": "code",
|
| 473 |
+
"execution_count": 17,
|
| 474 |
+
"metadata": {
|
| 475 |
+
"colab": {
|
| 476 |
+
"base_uri": "https://localhost:8080/",
|
| 477 |
+
"height": 140,
|
| 478 |
+
"referenced_widgets": [
|
| 479 |
+
"bbfb7533b5ca459194e171df56b79566",
|
| 480 |
+
"c894e8237aa34c56bb250acab1466005",
|
| 481 |
+
"a5a126b229064812bf3dcb228118be50",
|
| 482 |
+
"661e1b29c59a4295b594edfa4f50ff87",
|
| 483 |
+
"1bcba805972b484d8b6aa6542c81841c",
|
| 484 |
+
"e71f5c7f1d5d4f83b58c68d2fa310d9c",
|
| 485 |
+
"6a567e0a1a5447519c5df10e777520cf",
|
| 486 |
+
"7aeca19b84904906a04c12659f84ff9e",
|
| 487 |
+
"dd4b895874ce46ceb1ad0d9bc973f98f",
|
| 488 |
+
"b138f91be7f94008806eaf0a6988bc3f",
|
| 489 |
+
"da14180f51ab44b48470cb9ea74d3864",
|
| 490 |
+
"9e12d97af6124a5a8c6627708b300c1e",
|
| 491 |
+
"faa18df899c14e9cac6721253e6c9128",
|
| 492 |
+
"79d0ede7a5b24756aa6d34fda8c29159",
|
| 493 |
+
"3b175b452f4347558aa3c4501cc90030",
|
| 494 |
+
"fc4637a1b37e4e90874c71aa4271ac74",
|
| 495 |
+
"1b8aada826a0451bb60c418b19178c8c",
|
| 496 |
+
"a91916e02e9c424e881e45b3aa978574",
|
| 497 |
+
"ca509bd409624c998e555c9a779b8aae",
|
| 498 |
+
"9c890fc422954347b86d3bde7a421caf",
|
| 499 |
+
"6f9453484ea94587a64d70f1b3a1f6e4",
|
| 500 |
+
"48770ef159f44c01be2a75c75aecd80f",
|
| 501 |
+
"0c561dab67914ea9b6e1aab803600551",
|
| 502 |
+
"1e021a1954b44d69a90101a96c360661",
|
| 503 |
+
"013e3343285f437a893bdd673fb90e22",
|
| 504 |
+
"28802da68fb04d70b1c6bc511a04676f",
|
| 505 |
+
"94174da0d6554be087d4527bea5b511a",
|
| 506 |
+
"dc8ab16a1e6c4e6893c95ccd16568f9a",
|
| 507 |
+
"72383136663448d89cf3b82b87cbb392",
|
| 508 |
+
"5b1bdaf16cbc473081e4237f839167b9",
|
| 509 |
+
"51f8fb45485540bb985b606d43ae04ea",
|
| 510 |
+
"f760cd4758334ca9a43fd15612fd808b",
|
| 511 |
+
"f60e9915d2a74ca7bc010d7684f5acf6"
|
| 512 |
+
]
|
| 513 |
+
},
|
| 514 |
+
"id": "4ee2babf",
|
| 515 |
+
"outputId": "3c413083-247d-47da-f25c-032764be0beb"
|
| 516 |
+
},
|
| 517 |
+
"outputs": [
|
| 518 |
+
{
|
| 519 |
+
"name": "stderr",
|
| 520 |
+
"output_type": "stream",
|
| 521 |
+
"text": [
|
| 522 |
+
"WARNING:datasets.builder:Found cached dataset financial_phrasebank (/root/.cache/huggingface/datasets/financial_phrasebank/sentences_allagree/1.0.0/550bde12e6c30e2674da973a55f57edde5181d53f5a5a34c1531c53f93b7e141)\n"
|
| 523 |
+
]
|
| 524 |
+
},
|
| 525 |
+
{
|
| 526 |
+
"data": {
|
| 527 |
+
"application/vnd.jupyter.widget-view+json": {
|
| 528 |
+
"model_id": "bbfb7533b5ca459194e171df56b79566",
|
| 529 |
+
"version_major": 2,
|
| 530 |
+
"version_minor": 0
|
| 531 |
+
},
|
| 532 |
+
"text/plain": [
|
| 533 |
+
" 0%| | 0/1 [00:00<?, ?it/s]"
|
| 534 |
+
]
|
| 535 |
+
},
|
| 536 |
+
"metadata": {},
|
| 537 |
+
"output_type": "display_data"
|
| 538 |
+
},
|
| 539 |
+
{
|
| 540 |
+
"data": {
|
| 541 |
+
"application/vnd.jupyter.widget-view+json": {
|
| 542 |
+
"model_id": "9e12d97af6124a5a8c6627708b300c1e",
|
| 543 |
+
"version_major": 2,
|
| 544 |
+
"version_minor": 0
|
| 545 |
+
},
|
| 546 |
+
"text/plain": [
|
| 547 |
+
"Map: 0%| | 0/2037 [00:00<?, ? examples/s]"
|
| 548 |
+
]
|
| 549 |
+
},
|
| 550 |
+
"metadata": {},
|
| 551 |
+
"output_type": "display_data"
|
| 552 |
+
},
|
| 553 |
+
{
|
| 554 |
+
"data": {
|
| 555 |
+
"application/vnd.jupyter.widget-view+json": {
|
| 556 |
+
"model_id": "0c561dab67914ea9b6e1aab803600551",
|
| 557 |
+
"version_major": 2,
|
| 558 |
+
"version_minor": 0
|
| 559 |
+
},
|
| 560 |
+
"text/plain": [
|
| 561 |
+
"Map: 0%| | 0/227 [00:00<?, ? examples/s]"
|
| 562 |
+
]
|
| 563 |
+
},
|
| 564 |
+
"metadata": {},
|
| 565 |
+
"output_type": "display_data"
|
| 566 |
+
},
|
| 567 |
+
{
|
| 568 |
+
"data": {
|
| 569 |
+
"text/plain": [
|
| 570 |
+
"{'sentence': 'It will be operated by Nokia , and supported by its Nokia NetAct network and service management system .',\n",
|
| 571 |
+
" 'label': 1,\n",
|
| 572 |
+
" 'text_label': 'neutral'}"
|
| 573 |
+
]
|
| 574 |
+
},
|
| 575 |
+
"execution_count": 17,
|
| 576 |
+
"metadata": {},
|
| 577 |
+
"output_type": "execute_result"
|
| 578 |
+
}
|
| 579 |
+
],
|
| 580 |
+
"source": [
|
| 581 |
+
"# loading dataset\n",
|
| 582 |
+
"dataset = load_dataset(\"financial_phrasebank\", \"sentences_allagree\")\n",
|
| 583 |
+
"dataset = dataset[\"train\"].train_test_split(test_size=0.1)\n",
|
| 584 |
+
"dataset[\"validation\"] = dataset[\"test\"]\n",
|
| 585 |
+
"del dataset[\"test\"]\n",
|
| 586 |
+
"\n",
|
| 587 |
+
"classes = dataset[\"train\"].features[\"label\"].names\n",
|
| 588 |
+
"dataset = dataset.map(\n",
|
| 589 |
+
" lambda x: {\"text_label\": [classes[label] for label in x[\"label\"]]},\n",
|
| 590 |
+
" batched=True,\n",
|
| 591 |
+
" num_proc=1,\n",
|
| 592 |
+
")\n",
|
| 593 |
+
"\n",
|
| 594 |
+
"dataset[\"train\"][0]"
|
| 595 |
+
]
|
| 596 |
+
},
|
| 597 |
+
{
|
| 598 |
+
"cell_type": "code",
|
| 599 |
+
"execution_count": 18,
|
| 600 |
+
"metadata": {
|
| 601 |
+
"colab": {
|
| 602 |
+
"base_uri": "https://localhost:8080/",
|
| 603 |
+
"height": 17,
|
| 604 |
+
"referenced_widgets": [
|
| 605 |
+
"e1e80a68a9e7429397cafc96c3c11f80",
|
| 606 |
+
"5307864c2b1143f4b44f3f172611113e",
|
| 607 |
+
"2e2b6c3f48974ea4aca9b7710a03379e",
|
| 608 |
+
"aae78f9bd53348bda45967a38736cb78",
|
| 609 |
+
"34db17e0f28d40d6abafb8acd5dda379",
|
| 610 |
+
"8361dc2e0a834da6a0ad87f7b0cb4e1b",
|
| 611 |
+
"56f1d9d56dd44c8aa923d09a59cb0ebc",
|
| 612 |
+
"d93bfb366db14c2fa77b038752f69b38",
|
| 613 |
+
"749aaa39135841f98b344ffb840df3d4",
|
| 614 |
+
"5e5aa58adb0f48579871df33845e30b1",
|
| 615 |
+
"c25b49b7adaa48a0a3a306aa1e0661b4",
|
| 616 |
+
"21f582e1208a4a38ae3c0cdce87e5c14",
|
| 617 |
+
"d9d37b8b79f24dbf837327a250a5a346",
|
| 618 |
+
"8ba99043c350456d8623ce1d8c98f7a0",
|
| 619 |
+
"8bf37c12d5f74f7d8dbba423a9ee3ac3",
|
| 620 |
+
"f9d86ad7fa734f3a857505a542256a3c",
|
| 621 |
+
"86bf02b06ed740a88015c2b944205c1e",
|
| 622 |
+
"aef6a6be67f749908060d8038b6d3804",
|
| 623 |
+
"664c02903cb248fb9339805bccfd6c1d",
|
| 624 |
+
"82195b807b664a9585a76e0e50fe7609",
|
| 625 |
+
"8621932be14f42858d841e2ac1b173e7",
|
| 626 |
+
"71bcdb1e02144c9587879d8d815b91d4"
|
| 627 |
+
]
|
| 628 |
+
},
|
| 629 |
+
"id": "adf9608c",
|
| 630 |
+
"outputId": "3e4bc95f-1dc4-4d34-c212-6d2374359673"
|
| 631 |
+
},
|
| 632 |
+
"outputs": [
|
| 633 |
+
{
|
| 634 |
+
"data": {
|
| 635 |
+
"application/vnd.jupyter.widget-view+json": {
|
| 636 |
+
"model_id": "e1e80a68a9e7429397cafc96c3c11f80",
|
| 637 |
+
"version_major": 2,
|
| 638 |
+
"version_minor": 0
|
| 639 |
+
},
|
| 640 |
+
"text/plain": [
|
| 641 |
+
"Running tokenizer on dataset: 0%| | 0/2037 [00:00<?, ? examples/s]"
|
| 642 |
+
]
|
| 643 |
+
},
|
| 644 |
+
"metadata": {},
|
| 645 |
+
"output_type": "display_data"
|
| 646 |
+
},
|
| 647 |
+
{
|
| 648 |
+
"data": {
|
| 649 |
+
"application/vnd.jupyter.widget-view+json": {
|
| 650 |
+
"model_id": "21f582e1208a4a38ae3c0cdce87e5c14",
|
| 651 |
+
"version_major": 2,
|
| 652 |
+
"version_minor": 0
|
| 653 |
+
},
|
| 654 |
+
"text/plain": [
|
| 655 |
+
"Running tokenizer on dataset: 0%| | 0/227 [00:00<?, ? examples/s]"
|
| 656 |
+
]
|
| 657 |
+
},
|
| 658 |
+
"metadata": {},
|
| 659 |
+
"output_type": "display_data"
|
| 660 |
+
}
|
| 661 |
+
],
|
| 662 |
+
"source": [
|
| 663 |
+
"# data preprocessing\n",
|
| 664 |
+
"tokenizer = AutoTokenizer.from_pretrained(model_name_or_path)\n",
|
| 665 |
+
"\n",
|
| 666 |
+
"\n",
|
| 667 |
+
"def preprocess_function(examples):\n",
|
| 668 |
+
" inputs = examples[text_column]\n",
|
| 669 |
+
" targets = examples[label_column]\n",
|
| 670 |
+
" model_inputs = tokenizer(inputs, max_length=max_length, padding=\"max_length\", truncation=True, return_tensors=\"pt\")\n",
|
| 671 |
+
" labels = tokenizer(targets, max_length=3, padding=\"max_length\", truncation=True, return_tensors=\"pt\")\n",
|
| 672 |
+
" labels = labels[\"input_ids\"]\n",
|
| 673 |
+
" labels[labels == tokenizer.pad_token_id] = -100\n",
|
| 674 |
+
" model_inputs[\"labels\"] = labels\n",
|
| 675 |
+
" return model_inputs\n",
|
| 676 |
+
"\n",
|
| 677 |
+
"\n",
|
| 678 |
+
"processed_datasets = dataset.map(\n",
|
| 679 |
+
" preprocess_function,\n",
|
| 680 |
+
" batched=True,\n",
|
| 681 |
+
" num_proc=1,\n",
|
| 682 |
+
" remove_columns=dataset[\"train\"].column_names,\n",
|
| 683 |
+
" load_from_cache_file=False,\n",
|
| 684 |
+
" desc=\"Running tokenizer on dataset\",\n",
|
| 685 |
+
")\n",
|
| 686 |
+
"\n",
|
| 687 |
+
"train_dataset = processed_datasets[\"train\"]\n",
|
| 688 |
+
"eval_dataset = processed_datasets[\"validation\"]\n",
|
| 689 |
+
"\n",
|
| 690 |
+
"train_dataloader = DataLoader(\n",
|
| 691 |
+
" train_dataset, shuffle=True, collate_fn=default_data_collator, batch_size=batch_size, pin_memory=True\n",
|
| 692 |
+
")\n",
|
| 693 |
+
"eval_dataloader = DataLoader(eval_dataset, collate_fn=default_data_collator, batch_size=batch_size, pin_memory=True)"
|
| 694 |
+
]
|
| 695 |
+
},
|
| 696 |
+
{
|
| 697 |
+
"cell_type": "code",
|
| 698 |
+
"execution_count": 19,
|
| 699 |
+
"metadata": {
|
| 700 |
+
"id": "f733a3c6"
|
| 701 |
+
},
|
| 702 |
+
"outputs": [],
|
| 703 |
+
"source": [
|
| 704 |
+
"# optimizer and lr scheduler\n",
|
| 705 |
+
"optimizer = torch.optim.AdamW(model.parameters(), lr=lr)\n",
|
| 706 |
+
"lr_scheduler = get_linear_schedule_with_warmup(\n",
|
| 707 |
+
" optimizer=optimizer,\n",
|
| 708 |
+
" num_warmup_steps=0,\n",
|
| 709 |
+
" num_training_steps=(len(train_dataloader) * num_epochs),\n",
|
| 710 |
+
")"
|
| 711 |
+
]
|
| 712 |
+
},
|
| 713 |
+
{
|
| 714 |
+
"cell_type": "code",
|
| 715 |
+
"execution_count": 20,
|
| 716 |
+
"metadata": {
|
| 717 |
+
"colab": {
|
| 718 |
+
"base_uri": "https://localhost:8080/"
|
| 719 |
+
},
|
| 720 |
+
"id": "6b3a4090",
|
| 721 |
+
"outputId": "369cfce9-90f2-47a1-8653-ea1168943949"
|
| 722 |
+
},
|
| 723 |
+
"outputs": [
|
| 724 |
+
{
|
| 725 |
+
"name": "stderr",
|
| 726 |
+
"output_type": "stream",
|
| 727 |
+
"text": [
|
| 728 |
+
"100%|██████████| 255/255 [02:33<00:00, 1.67it/s]\n",
|
| 729 |
+
"100%|██████████| 29/29 [00:08<00:00, 3.48it/s]\n"
|
| 730 |
+
]
|
| 731 |
+
},
|
| 732 |
+
{
|
| 733 |
+
"name": "stdout",
|
| 734 |
+
"output_type": "stream",
|
| 735 |
+
"text": [
|
| 736 |
+
"epoch=0: train_ppl=tensor(1.4939, device='cuda:0') train_epoch_loss=tensor(0.4014, device='cuda:0') eval_ppl=tensor(1.0514, device='cuda:0') eval_epoch_loss=tensor(0.0501, device='cuda:0')\n"
|
| 737 |
+
]
|
| 738 |
+
},
|
| 739 |
+
{
|
| 740 |
+
"name": "stderr",
|
| 741 |
+
"output_type": "stream",
|
| 742 |
+
"text": [
|
| 743 |
+
"100%|██████████| 255/255 [02:32<00:00, 1.67it/s]\n",
|
| 744 |
+
"100%|██████████| 29/29 [00:08<00:00, 3.43it/s]\n"
|
| 745 |
+
]
|
| 746 |
+
},
|
| 747 |
+
{
|
| 748 |
+
"name": "stdout",
|
| 749 |
+
"output_type": "stream",
|
| 750 |
+
"text": [
|
| 751 |
+
"epoch=1: train_ppl=tensor(1.0523, device='cuda:0') train_epoch_loss=tensor(0.0510, device='cuda:0') eval_ppl=tensor(1.0383, device='cuda:0') eval_epoch_loss=tensor(0.0376, device='cuda:0')\n"
|
| 752 |
+
]
|
| 753 |
+
},
|
| 754 |
+
{
|
| 755 |
+
"name": "stderr",
|
| 756 |
+
"output_type": "stream",
|
| 757 |
+
"text": [
|
| 758 |
+
"100%|██████████| 255/255 [02:32<00:00, 1.68it/s]\n",
|
| 759 |
+
"100%|██████████| 29/29 [00:08<00:00, 3.44it/s]"
|
| 760 |
+
]
|
| 761 |
+
},
|
| 762 |
+
{
|
| 763 |
+
"name": "stdout",
|
| 764 |
+
"output_type": "stream",
|
| 765 |
+
"text": [
|
| 766 |
+
"epoch=2: train_ppl=tensor(1.0397, device='cuda:0') train_epoch_loss=tensor(0.0389, device='cuda:0') eval_ppl=tensor(1.0392, device='cuda:0') eval_epoch_loss=tensor(0.0385, device='cuda:0')\n"
|
| 767 |
+
]
|
| 768 |
+
},
|
| 769 |
+
{
|
| 770 |
+
"name": "stderr",
|
| 771 |
+
"output_type": "stream",
|
| 772 |
+
"text": [
|
| 773 |
+
"\n"
|
| 774 |
+
]
|
| 775 |
+
}
|
| 776 |
+
],
|
| 777 |
+
"source": [
|
| 778 |
+
"# training and evaluation\n",
|
| 779 |
+
"model = model.to(device)\n",
|
| 780 |
+
"\n",
|
| 781 |
+
"for epoch in range(num_epochs):\n",
|
| 782 |
+
" model.train()\n",
|
| 783 |
+
" total_loss = 0\n",
|
| 784 |
+
" for step, batch in enumerate(tqdm(train_dataloader)):\n",
|
| 785 |
+
" batch = {k: v.to(device) for k, v in batch.items()}\n",
|
| 786 |
+
" outputs = model(**batch)\n",
|
| 787 |
+
" loss = outputs.loss\n",
|
| 788 |
+
" total_loss += loss.detach().float()\n",
|
| 789 |
+
" loss.backward()\n",
|
| 790 |
+
" optimizer.step()\n",
|
| 791 |
+
" lr_scheduler.step()\n",
|
| 792 |
+
" optimizer.zero_grad()\n",
|
| 793 |
+
"\n",
|
| 794 |
+
" model.eval()\n",
|
| 795 |
+
" eval_loss = 0\n",
|
| 796 |
+
" eval_preds = []\n",
|
| 797 |
+
" for step, batch in enumerate(tqdm(eval_dataloader)):\n",
|
| 798 |
+
" batch = {k: v.to(device) for k, v in batch.items()}\n",
|
| 799 |
+
" with torch.no_grad():\n",
|
| 800 |
+
" outputs = model(**batch)\n",
|
| 801 |
+
" loss = outputs.loss\n",
|
| 802 |
+
" eval_loss += loss.detach().float()\n",
|
| 803 |
+
" eval_preds.extend(\n",
|
| 804 |
+
" tokenizer.batch_decode(torch.argmax(outputs.logits, -1).detach().cpu().numpy(), skip_special_tokens=True)\n",
|
| 805 |
+
" )\n",
|
| 806 |
+
"\n",
|
| 807 |
+
" eval_epoch_loss = eval_loss / len(eval_dataloader)\n",
|
| 808 |
+
" eval_ppl = torch.exp(eval_epoch_loss)\n",
|
| 809 |
+
" train_epoch_loss = total_loss / len(train_dataloader)\n",
|
| 810 |
+
" train_ppl = torch.exp(train_epoch_loss)\n",
|
| 811 |
+
" print(f\"{epoch=}: {train_ppl=} {train_epoch_loss=} {eval_ppl=} {eval_epoch_loss=}\")"
|
| 812 |
+
]
|
| 813 |
+
},
|
| 814 |
+
{
|
| 815 |
+
"cell_type": "code",
|
| 816 |
+
"execution_count": 21,
|
| 817 |
+
"metadata": {
|
| 818 |
+
"colab": {
|
| 819 |
+
"base_uri": "https://localhost:8080/"
|
| 820 |
+
},
|
| 821 |
+
"id": "6cafa67b",
|
| 822 |
+
"outputId": "0db923d2-522c-4cb7-b694-6e2e20beae98"
|
| 823 |
+
},
|
| 824 |
+
"outputs": [
|
| 825 |
+
{
|
| 826 |
+
"name": "stdout",
|
| 827 |
+
"output_type": "stream",
|
| 828 |
+
"text": [
|
| 829 |
+
"accuracy=96.91629955947137 % on the evaluation dataset\n",
|
| 830 |
+
"eval_preds[:10]=['neutral', 'neutral', 'neutral', 'neutral', 'positive', 'neutral', 'neutral', 'neutral', 'neutral', 'neutral']\n",
|
| 831 |
+
"dataset['validation']['text_label'][:10]=['neutral', 'neutral', 'neutral', 'neutral', 'positive', 'neutral', 'neutral', 'neutral', 'neutral', 'neutral']\n"
|
| 832 |
+
]
|
| 833 |
+
}
|
| 834 |
+
],
|
| 835 |
+
"source": [
|
| 836 |
+
"# print accuracy\n",
|
| 837 |
+
"correct = 0\n",
|
| 838 |
+
"total = 0\n",
|
| 839 |
+
"for pred, true in zip(eval_preds, dataset[\"validation\"][\"text_label\"]):\n",
|
| 840 |
+
" if pred.strip() == true.strip():\n",
|
| 841 |
+
" correct += 1\n",
|
| 842 |
+
" total += 1\n",
|
| 843 |
+
"accuracy = correct / total * 100\n",
|
| 844 |
+
"print(f\"{accuracy=} % on the evaluation dataset\")\n",
|
| 845 |
+
"print(f\"{eval_preds[:10]=}\")\n",
|
| 846 |
+
"print(f\"{dataset['validation']['text_label'][:10]=}\")"
|
| 847 |
+
]
|
| 848 |
+
},
|
| 849 |
+
{
|
| 850 |
+
"cell_type": "code",
|
| 851 |
+
"execution_count": 22,
|
| 852 |
+
"metadata": {
|
| 853 |
+
"id": "a8de6005"
|
| 854 |
+
},
|
| 855 |
+
"outputs": [],
|
| 856 |
+
"source": [
|
| 857 |
+
"# saving model\n",
|
| 858 |
+
"peft_model_id = f\"{model_name_or_path}_{peft_config.peft_type}_{peft_config.task_type}\"\n",
|
| 859 |
+
"model.save_pretrained(peft_model_id)"
|
| 860 |
+
]
|
| 861 |
+
},
|
| 862 |
+
{
|
| 863 |
+
"cell_type": "code",
|
| 864 |
+
"execution_count": 23,
|
| 865 |
+
"metadata": {
|
| 866 |
+
"colab": {
|
| 867 |
+
"base_uri": "https://localhost:8080/"
|
| 868 |
+
},
|
| 869 |
+
"id": "bd20cd4c",
|
| 870 |
+
"outputId": "0f25d837-80b1-476f-c897-92c3fef04fb2"
|
| 871 |
+
},
|
| 872 |
+
"outputs": [
|
| 873 |
+
{
|
| 874 |
+
"name": "stdout",
|
| 875 |
+
"output_type": "stream",
|
| 876 |
+
"text": [
|
| 877 |
+
"1.2M\tbigscience/mt0-large_IA3_SEQ_2_SEQ_LM/adapter_model.bin\n"
|
| 878 |
+
]
|
| 879 |
+
}
|
| 880 |
+
],
|
| 881 |
+
"source": [
|
| 882 |
+
"ckpt = f\"{peft_model_id}/adapter_model.bin\"\n",
|
| 883 |
+
"!du -h $ckpt"
|
| 884 |
+
]
|
| 885 |
+
},
|
| 886 |
+
{
|
| 887 |
+
"cell_type": "code",
|
| 888 |
+
"execution_count": 24,
|
| 889 |
+
"metadata": {
|
| 890 |
+
"id": "76c2fc29"
|
| 891 |
+
},
|
| 892 |
+
"outputs": [],
|
| 893 |
+
"source": [
|
| 894 |
+
"from peft import PeftModel, PeftConfig\n",
|
| 895 |
+
"\n",
|
| 896 |
+
"peft_model_id = f\"{model_name_or_path}_{peft_config.peft_type}_{peft_config.task_type}\"\n",
|
| 897 |
+
"\n",
|
| 898 |
+
"config = PeftConfig.from_pretrained(peft_model_id)\n",
|
| 899 |
+
"model = AutoModelForSeq2SeqLM.from_pretrained(config.base_model_name_or_path)\n",
|
| 900 |
+
"model = PeftModel.from_pretrained(model, peft_model_id)"
|
| 901 |
+
]
|
| 902 |
+
},
|
| 903 |
+
{
|
| 904 |
+
"cell_type": "code",
|
| 905 |
+
"execution_count": 25,
|
| 906 |
+
"metadata": {
|
| 907 |
+
"colab": {
|
| 908 |
+
"base_uri": "https://localhost:8080/"
|
| 909 |
+
},
|
| 910 |
+
"id": "37d712ce",
|
| 911 |
+
"outputId": "4828819a-b640-4f6c-91e3-878b648e9a75"
|
| 912 |
+
},
|
| 913 |
+
"outputs": [
|
| 914 |
+
{
|
| 915 |
+
"name": "stdout",
|
| 916 |
+
"output_type": "stream",
|
| 917 |
+
"text": [
|
| 918 |
+
"25 November 2010 - Finnish paints and coatings company Tikkurila Oyj ( HEL : TIK1V ) said today that Finnish state-owned investment company Solidium Oy sold its 14.7 % stake in the company for a total of EUR98m .\n",
|
| 919 |
+
"{'input_ids': tensor([[ 877, 3277, 1068, 259, 264, 515, 143136, 42068, 263,\n",
|
| 920 |
+
" 305, 259, 101264, 263, 5835, 22538, 4496, 2697, 20860,\n",
|
| 921 |
+
" 385, 274, 76347, 259, 267, 259, 93686, 353, 561,\n",
|
| 922 |
+
" 259, 271, 2426, 7883, 533, 515, 143136, 6509, 264,\n",
|
| 923 |
+
" 45815, 37624, 5835, 35133, 16558, 20860, 22026, 2476, 5006,\n",
|
| 924 |
+
" 487, 1448, 259, 96189, 281, 287, 5835, 332, 259,\n",
|
| 925 |
+
" 262, 2725, 304, 2687, 5577, 282, 259, 260, 1]]), 'attention_mask': tensor([[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,\n",
|
| 926 |
+
" 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,\n",
|
| 927 |
+
" 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]])}\n",
|
| 928 |
+
"tensor([[ 0, 59006, 1]])\n",
|
| 929 |
+
"['neutral']\n"
|
| 930 |
+
]
|
| 931 |
+
}
|
| 932 |
+
],
|
| 933 |
+
"source": [
|
| 934 |
+
"model.eval()\n",
|
| 935 |
+
"i = 13\n",
|
| 936 |
+
"inputs = tokenizer(dataset[\"validation\"][text_column][i], return_tensors=\"pt\")\n",
|
| 937 |
+
"print(dataset[\"validation\"][text_column][i])\n",
|
| 938 |
+
"print(inputs)\n",
|
| 939 |
+
"\n",
|
| 940 |
+
"with torch.no_grad():\n",
|
| 941 |
+
" outputs = model.generate(input_ids=inputs[\"input_ids\"], max_new_tokens=10)\n",
|
| 942 |
+
" print(outputs)\n",
|
| 943 |
+
" print(tokenizer.batch_decode(outputs.detach().cpu().numpy(), skip_special_tokens=True))"
|
| 944 |
+
]
|
| 945 |
+
},
|
| 946 |
+
{
|
| 947 |
+
"cell_type": "code",
|
| 948 |
+
"execution_count": null,
|
| 949 |
+
"metadata": {
|
| 950 |
+
"id": "66c65ea4"
|
| 951 |
+
},
|
| 952 |
+
"outputs": [],
|
| 953 |
+
"source": []
|
| 954 |
+
},
|
| 955 |
+
{
|
| 956 |
+
"cell_type": "code",
|
| 957 |
+
"execution_count": null,
|
| 958 |
+
"metadata": {
|
| 959 |
+
"id": "65e71f78"
|
| 960 |
+
},
|
| 961 |
+
"outputs": [],
|
| 962 |
+
"source": []
|
| 963 |
+
}
|
| 964 |
+
],
|
| 965 |
+
"metadata": {
|
| 966 |
+
"accelerator": "GPU",
|
| 967 |
+
"colab": {
|
| 968 |
+
"gpuType": "T4",
|
| 969 |
+
"machine_shape": "hm",
|
| 970 |
+
"provenance": []
|
| 971 |
+
},
|
| 972 |
+
"kernelspec": {
|
| 973 |
+
"display_name": "Python 3",
|
| 974 |
+
"language": "python",
|
| 975 |
+
"name": "python3"
|
| 976 |
+
},
|
| 977 |
+
"language_info": {
|
| 978 |
+
"codemirror_mode": {
|
| 979 |
+
"name": "ipython",
|
| 980 |
+
"version": 3
|
| 981 |
+
},
|
| 982 |
+
"file_extension": ".py",
|
| 983 |
+
"mimetype": "text/x-python",
|
| 984 |
+
"name": "python",
|
| 985 |
+
"nbconvert_exporter": "python",
|
| 986 |
+
"pygments_lexer": "ipython3",
|
| 987 |
+
"version": "3.8.3"
|
| 988 |
+
},
|
| 989 |
+
"vscode": {
|
| 990 |
+
"interpreter": {
|
| 991 |
+
"hash": "aee8b7b246df8f9039afb4144a1f6fd8d2ca17a180786b69acc140d282b71a49"
|
| 992 |
+
}
|
| 993 |
+
},
|
| 994 |
+
"widgets": {
|
| 995 |
+
"application/vnd.jupyter.widget-state+json": {
|
| 996 |
+
"013e3343285f437a893bdd673fb90e22": {
|
| 997 |
+
"model_module": "@jupyter-widgets/controls",
|
| 998 |
+
"model_module_version": "1.5.0",
|
| 999 |
+
"model_name": "FloatProgressModel",
|
| 1000 |
+
"state": {
|
| 1001 |
+
"_dom_classes": [],
|
| 1002 |
+
"_model_module": "@jupyter-widgets/controls",
|
| 1003 |
+
"_model_module_version": "1.5.0",
|
| 1004 |
+
"_model_name": "FloatProgressModel",
|
| 1005 |
+
"_view_count": null,
|
| 1006 |
+
"_view_module": "@jupyter-widgets/controls",
|
| 1007 |
+
"_view_module_version": "1.5.0",
|
| 1008 |
+
"_view_name": "ProgressView",
|
| 1009 |
+
"bar_style": "",
|
| 1010 |
+
"description": "",
|
| 1011 |
+
"description_tooltip": null,
|
| 1012 |
+
"layout": "IPY_MODEL_5b1bdaf16cbc473081e4237f839167b9",
|
| 1013 |
+
"max": 227,
|
| 1014 |
+
"min": 0,
|
| 1015 |
+
"orientation": "horizontal",
|
| 1016 |
+
"style": "IPY_MODEL_51f8fb45485540bb985b606d43ae04ea",
|
| 1017 |
+
"value": 227
|
| 1018 |
+
}
|
| 1019 |
+
},
|
| 1020 |
+
"0c561dab67914ea9b6e1aab803600551": {
|
| 1021 |
+
"model_module": "@jupyter-widgets/controls",
|
| 1022 |
+
"model_module_version": "1.5.0",
|
| 1023 |
+
"model_name": "HBoxModel",
|
| 1024 |
+
"state": {
|
| 1025 |
+
"_dom_classes": [],
|
| 1026 |
+
"_model_module": "@jupyter-widgets/controls",
|
| 1027 |
+
"_model_module_version": "1.5.0",
|
| 1028 |
+
"_model_name": "HBoxModel",
|
| 1029 |
+
"_view_count": null,
|
| 1030 |
+
"_view_module": "@jupyter-widgets/controls",
|
| 1031 |
+
"_view_module_version": "1.5.0",
|
| 1032 |
+
"_view_name": "HBoxView",
|
| 1033 |
+
"box_style": "",
|
| 1034 |
+
"children": [
|
| 1035 |
+
"IPY_MODEL_1e021a1954b44d69a90101a96c360661",
|
| 1036 |
+
"IPY_MODEL_013e3343285f437a893bdd673fb90e22",
|
| 1037 |
+
"IPY_MODEL_28802da68fb04d70b1c6bc511a04676f"
|
| 1038 |
+
],
|
| 1039 |
+
"layout": "IPY_MODEL_94174da0d6554be087d4527bea5b511a"
|
| 1040 |
+
}
|
| 1041 |
+
},
|
| 1042 |
+
"1b8aada826a0451bb60c418b19178c8c": {
|
| 1043 |
+
"model_module": "@jupyter-widgets/base",
|
| 1044 |
+
"model_module_version": "1.2.0",
|
| 1045 |
+
"model_name": "LayoutModel",
|
| 1046 |
+
"state": {
|
| 1047 |
+
"_model_module": "@jupyter-widgets/base",
|
| 1048 |
+
"_model_module_version": "1.2.0",
|
| 1049 |
+
"_model_name": "LayoutModel",
|
| 1050 |
+
"_view_count": null,
|
| 1051 |
+
"_view_module": "@jupyter-widgets/base",
|
| 1052 |
+
"_view_module_version": "1.2.0",
|
| 1053 |
+
"_view_name": "LayoutView",
|
| 1054 |
+
"align_content": null,
|
| 1055 |
+
"align_items": null,
|
| 1056 |
+
"align_self": null,
|
| 1057 |
+
"border": null,
|
| 1058 |
+
"bottom": null,
|
| 1059 |
+
"display": null,
|
| 1060 |
+
"flex": null,
|
| 1061 |
+
"flex_flow": null,
|
| 1062 |
+
"grid_area": null,
|
| 1063 |
+
"grid_auto_columns": null,
|
| 1064 |
+
"grid_auto_flow": null,
|
| 1065 |
+
"grid_auto_rows": null,
|
| 1066 |
+
"grid_column": null,
|
| 1067 |
+
"grid_gap": null,
|
| 1068 |
+
"grid_row": null,
|
| 1069 |
+
"grid_template_areas": null,
|
| 1070 |
+
"grid_template_columns": null,
|
| 1071 |
+
"grid_template_rows": null,
|
| 1072 |
+
"height": null,
|
| 1073 |
+
"justify_content": null,
|
| 1074 |
+
"justify_items": null,
|
| 1075 |
+
"left": null,
|
| 1076 |
+
"margin": null,
|
| 1077 |
+
"max_height": null,
|
| 1078 |
+
"max_width": null,
|
| 1079 |
+
"min_height": null,
|
| 1080 |
+
"min_width": null,
|
| 1081 |
+
"object_fit": null,
|
| 1082 |
+
"object_position": null,
|
| 1083 |
+
"order": null,
|
| 1084 |
+
"overflow": null,
|
| 1085 |
+
"overflow_x": null,
|
| 1086 |
+
"overflow_y": null,
|
| 1087 |
+
"padding": null,
|
| 1088 |
+
"right": null,
|
| 1089 |
+
"top": null,
|
| 1090 |
+
"visibility": null,
|
| 1091 |
+
"width": null
|
| 1092 |
+
}
|
| 1093 |
+
},
|
| 1094 |
+
"1bcba805972b484d8b6aa6542c81841c": {
|
| 1095 |
+
"model_module": "@jupyter-widgets/base",
|
| 1096 |
+
"model_module_version": "1.2.0",
|
| 1097 |
+
"model_name": "LayoutModel",
|
| 1098 |
+
"state": {
|
| 1099 |
+
"_model_module": "@jupyter-widgets/base",
|
| 1100 |
+
"_model_module_version": "1.2.0",
|
| 1101 |
+
"_model_name": "LayoutModel",
|
| 1102 |
+
"_view_count": null,
|
| 1103 |
+
"_view_module": "@jupyter-widgets/base",
|
| 1104 |
+
"_view_module_version": "1.2.0",
|
| 1105 |
+
"_view_name": "LayoutView",
|
| 1106 |
+
"align_content": null,
|
| 1107 |
+
"align_items": null,
|
| 1108 |
+
"align_self": null,
|
| 1109 |
+
"border": null,
|
| 1110 |
+
"bottom": null,
|
| 1111 |
+
"display": null,
|
| 1112 |
+
"flex": null,
|
| 1113 |
+
"flex_flow": null,
|
| 1114 |
+
"grid_area": null,
|
| 1115 |
+
"grid_auto_columns": null,
|
| 1116 |
+
"grid_auto_flow": null,
|
| 1117 |
+
"grid_auto_rows": null,
|
| 1118 |
+
"grid_column": null,
|
| 1119 |
+
"grid_gap": null,
|
| 1120 |
+
"grid_row": null,
|
| 1121 |
+
"grid_template_areas": null,
|
| 1122 |
+
"grid_template_columns": null,
|
| 1123 |
+
"grid_template_rows": null,
|
| 1124 |
+
"height": null,
|
| 1125 |
+
"justify_content": null,
|
| 1126 |
+
"justify_items": null,
|
| 1127 |
+
"left": null,
|
| 1128 |
+
"margin": null,
|
| 1129 |
+
"max_height": null,
|
| 1130 |
+
"max_width": null,
|
| 1131 |
+
"min_height": null,
|
| 1132 |
+
"min_width": null,
|
| 1133 |
+
"object_fit": null,
|
| 1134 |
+
"object_position": null,
|
| 1135 |
+
"order": null,
|
| 1136 |
+
"overflow": null,
|
| 1137 |
+
"overflow_x": null,
|
| 1138 |
+
"overflow_y": null,
|
| 1139 |
+
"padding": null,
|
| 1140 |
+
"right": null,
|
| 1141 |
+
"top": null,
|
| 1142 |
+
"visibility": null,
|
| 1143 |
+
"width": null
|
| 1144 |
+
}
|
| 1145 |
+
},
|
| 1146 |
+
"1e021a1954b44d69a90101a96c360661": {
|
| 1147 |
+
"model_module": "@jupyter-widgets/controls",
|
| 1148 |
+
"model_module_version": "1.5.0",
|
| 1149 |
+
"model_name": "HTMLModel",
|
| 1150 |
+
"state": {
|
| 1151 |
+
"_dom_classes": [],
|
| 1152 |
+
"_model_module": "@jupyter-widgets/controls",
|
| 1153 |
+
"_model_module_version": "1.5.0",
|
| 1154 |
+
"_model_name": "HTMLModel",
|
| 1155 |
+
"_view_count": null,
|
| 1156 |
+
"_view_module": "@jupyter-widgets/controls",
|
| 1157 |
+
"_view_module_version": "1.5.0",
|
| 1158 |
+
"_view_name": "HTMLView",
|
| 1159 |
+
"description": "",
|
| 1160 |
+
"description_tooltip": null,
|
| 1161 |
+
"layout": "IPY_MODEL_dc8ab16a1e6c4e6893c95ccd16568f9a",
|
| 1162 |
+
"placeholder": "",
|
| 1163 |
+
"style": "IPY_MODEL_72383136663448d89cf3b82b87cbb392",
|
| 1164 |
+
"value": "Map: 0%"
|
| 1165 |
+
}
|
| 1166 |
+
},
|
| 1167 |
+
"21f582e1208a4a38ae3c0cdce87e5c14": {
|
| 1168 |
+
"model_module": "@jupyter-widgets/controls",
|
| 1169 |
+
"model_module_version": "1.5.0",
|
| 1170 |
+
"model_name": "HBoxModel",
|
| 1171 |
+
"state": {
|
| 1172 |
+
"_dom_classes": [],
|
| 1173 |
+
"_model_module": "@jupyter-widgets/controls",
|
| 1174 |
+
"_model_module_version": "1.5.0",
|
| 1175 |
+
"_model_name": "HBoxModel",
|
| 1176 |
+
"_view_count": null,
|
| 1177 |
+
"_view_module": "@jupyter-widgets/controls",
|
| 1178 |
+
"_view_module_version": "1.5.0",
|
| 1179 |
+
"_view_name": "HBoxView",
|
| 1180 |
+
"box_style": "",
|
| 1181 |
+
"children": [
|
| 1182 |
+
"IPY_MODEL_d9d37b8b79f24dbf837327a250a5a346",
|
| 1183 |
+
"IPY_MODEL_8ba99043c350456d8623ce1d8c98f7a0",
|
| 1184 |
+
"IPY_MODEL_8bf37c12d5f74f7d8dbba423a9ee3ac3"
|
| 1185 |
+
],
|
| 1186 |
+
"layout": "IPY_MODEL_f9d86ad7fa734f3a857505a542256a3c"
|
| 1187 |
+
}
|
| 1188 |
+
},
|
| 1189 |
+
"28802da68fb04d70b1c6bc511a04676f": {
|
| 1190 |
+
"model_module": "@jupyter-widgets/controls",
|
| 1191 |
+
"model_module_version": "1.5.0",
|
| 1192 |
+
"model_name": "HTMLModel",
|
| 1193 |
+
"state": {
|
| 1194 |
+
"_dom_classes": [],
|
| 1195 |
+
"_model_module": "@jupyter-widgets/controls",
|
| 1196 |
+
"_model_module_version": "1.5.0",
|
| 1197 |
+
"_model_name": "HTMLModel",
|
| 1198 |
+
"_view_count": null,
|
| 1199 |
+
"_view_module": "@jupyter-widgets/controls",
|
| 1200 |
+
"_view_module_version": "1.5.0",
|
| 1201 |
+
"_view_name": "HTMLView",
|
| 1202 |
+
"description": "",
|
| 1203 |
+
"description_tooltip": null,
|
| 1204 |
+
"layout": "IPY_MODEL_f760cd4758334ca9a43fd15612fd808b",
|
| 1205 |
+
"placeholder": "",
|
| 1206 |
+
"style": "IPY_MODEL_f60e9915d2a74ca7bc010d7684f5acf6",
|
| 1207 |
+
"value": " 0/227 [00:00<?, ? examples/s]"
|
| 1208 |
+
}
|
| 1209 |
+
},
|
| 1210 |
+
"2e2b6c3f48974ea4aca9b7710a03379e": {
|
| 1211 |
+
"model_module": "@jupyter-widgets/controls",
|
| 1212 |
+
"model_module_version": "1.5.0",
|
| 1213 |
+
"model_name": "FloatProgressModel",
|
| 1214 |
+
"state": {
|
| 1215 |
+
"_dom_classes": [],
|
| 1216 |
+
"_model_module": "@jupyter-widgets/controls",
|
| 1217 |
+
"_model_module_version": "1.5.0",
|
| 1218 |
+
"_model_name": "FloatProgressModel",
|
| 1219 |
+
"_view_count": null,
|
| 1220 |
+
"_view_module": "@jupyter-widgets/controls",
|
| 1221 |
+
"_view_module_version": "1.5.0",
|
| 1222 |
+
"_view_name": "ProgressView",
|
| 1223 |
+
"bar_style": "",
|
| 1224 |
+
"description": "",
|
| 1225 |
+
"description_tooltip": null,
|
| 1226 |
+
"layout": "IPY_MODEL_d93bfb366db14c2fa77b038752f69b38",
|
| 1227 |
+
"max": 2037,
|
| 1228 |
+
"min": 0,
|
| 1229 |
+
"orientation": "horizontal",
|
| 1230 |
+
"style": "IPY_MODEL_749aaa39135841f98b344ffb840df3d4",
|
| 1231 |
+
"value": 2037
|
| 1232 |
+
}
|
| 1233 |
+
},
|
| 1234 |
+
"34db17e0f28d40d6abafb8acd5dda379": {
|
| 1235 |
+
"model_module": "@jupyter-widgets/base",
|
| 1236 |
+
"model_module_version": "1.2.0",
|
| 1237 |
+
"model_name": "LayoutModel",
|
| 1238 |
+
"state": {
|
| 1239 |
+
"_model_module": "@jupyter-widgets/base",
|
| 1240 |
+
"_model_module_version": "1.2.0",
|
| 1241 |
+
"_model_name": "LayoutModel",
|
| 1242 |
+
"_view_count": null,
|
| 1243 |
+
"_view_module": "@jupyter-widgets/base",
|
| 1244 |
+
"_view_module_version": "1.2.0",
|
| 1245 |
+
"_view_name": "LayoutView",
|
| 1246 |
+
"align_content": null,
|
| 1247 |
+
"align_items": null,
|
| 1248 |
+
"align_self": null,
|
| 1249 |
+
"border": null,
|
| 1250 |
+
"bottom": null,
|
| 1251 |
+
"display": null,
|
| 1252 |
+
"flex": null,
|
| 1253 |
+
"flex_flow": null,
|
| 1254 |
+
"grid_area": null,
|
| 1255 |
+
"grid_auto_columns": null,
|
| 1256 |
+
"grid_auto_flow": null,
|
| 1257 |
+
"grid_auto_rows": null,
|
| 1258 |
+
"grid_column": null,
|
| 1259 |
+
"grid_gap": null,
|
| 1260 |
+
"grid_row": null,
|
| 1261 |
+
"grid_template_areas": null,
|
| 1262 |
+
"grid_template_columns": null,
|
| 1263 |
+
"grid_template_rows": null,
|
| 1264 |
+
"height": null,
|
| 1265 |
+
"justify_content": null,
|
| 1266 |
+
"justify_items": null,
|
| 1267 |
+
"left": null,
|
| 1268 |
+
"margin": null,
|
| 1269 |
+
"max_height": null,
|
| 1270 |
+
"max_width": null,
|
| 1271 |
+
"min_height": null,
|
| 1272 |
+
"min_width": null,
|
| 1273 |
+
"object_fit": null,
|
| 1274 |
+
"object_position": null,
|
| 1275 |
+
"order": null,
|
| 1276 |
+
"overflow": null,
|
| 1277 |
+
"overflow_x": null,
|
| 1278 |
+
"overflow_y": null,
|
| 1279 |
+
"padding": null,
|
| 1280 |
+
"right": null,
|
| 1281 |
+
"top": null,
|
| 1282 |
+
"visibility": "hidden",
|
| 1283 |
+
"width": null
|
| 1284 |
+
}
|
| 1285 |
+
},
|
| 1286 |
+
"3b175b452f4347558aa3c4501cc90030": {
|
| 1287 |
+
"model_module": "@jupyter-widgets/controls",
|
| 1288 |
+
"model_module_version": "1.5.0",
|
| 1289 |
+
"model_name": "HTMLModel",
|
| 1290 |
+
"state": {
|
| 1291 |
+
"_dom_classes": [],
|
| 1292 |
+
"_model_module": "@jupyter-widgets/controls",
|
| 1293 |
+
"_model_module_version": "1.5.0",
|
| 1294 |
+
"_model_name": "HTMLModel",
|
| 1295 |
+
"_view_count": null,
|
| 1296 |
+
"_view_module": "@jupyter-widgets/controls",
|
| 1297 |
+
"_view_module_version": "1.5.0",
|
| 1298 |
+
"_view_name": "HTMLView",
|
| 1299 |
+
"description": "",
|
| 1300 |
+
"description_tooltip": null,
|
| 1301 |
+
"layout": "IPY_MODEL_6f9453484ea94587a64d70f1b3a1f6e4",
|
| 1302 |
+
"placeholder": "",
|
| 1303 |
+
"style": "IPY_MODEL_48770ef159f44c01be2a75c75aecd80f",
|
| 1304 |
+
"value": " 0/2037 [00:00<?, ? examples/s]"
|
| 1305 |
+
}
|
| 1306 |
+
},
|
| 1307 |
+
"48770ef159f44c01be2a75c75aecd80f": {
|
| 1308 |
+
"model_module": "@jupyter-widgets/controls",
|
| 1309 |
+
"model_module_version": "1.5.0",
|
| 1310 |
+
"model_name": "DescriptionStyleModel",
|
| 1311 |
+
"state": {
|
| 1312 |
+
"_model_module": "@jupyter-widgets/controls",
|
| 1313 |
+
"_model_module_version": "1.5.0",
|
| 1314 |
+
"_model_name": "DescriptionStyleModel",
|
| 1315 |
+
"_view_count": null,
|
| 1316 |
+
"_view_module": "@jupyter-widgets/base",
|
| 1317 |
+
"_view_module_version": "1.2.0",
|
| 1318 |
+
"_view_name": "StyleView",
|
| 1319 |
+
"description_width": ""
|
| 1320 |
+
}
|
| 1321 |
+
},
|
| 1322 |
+
"51f8fb45485540bb985b606d43ae04ea": {
|
| 1323 |
+
"model_module": "@jupyter-widgets/controls",
|
| 1324 |
+
"model_module_version": "1.5.0",
|
| 1325 |
+
"model_name": "ProgressStyleModel",
|
| 1326 |
+
"state": {
|
| 1327 |
+
"_model_module": "@jupyter-widgets/controls",
|
| 1328 |
+
"_model_module_version": "1.5.0",
|
| 1329 |
+
"_model_name": "ProgressStyleModel",
|
| 1330 |
+
"_view_count": null,
|
| 1331 |
+
"_view_module": "@jupyter-widgets/base",
|
| 1332 |
+
"_view_module_version": "1.2.0",
|
| 1333 |
+
"_view_name": "StyleView",
|
| 1334 |
+
"bar_color": null,
|
| 1335 |
+
"description_width": ""
|
| 1336 |
+
}
|
| 1337 |
+
},
|
| 1338 |
+
"5307864c2b1143f4b44f3f172611113e": {
|
| 1339 |
+
"model_module": "@jupyter-widgets/controls",
|
| 1340 |
+
"model_module_version": "1.5.0",
|
| 1341 |
+
"model_name": "HTMLModel",
|
| 1342 |
+
"state": {
|
| 1343 |
+
"_dom_classes": [],
|
| 1344 |
+
"_model_module": "@jupyter-widgets/controls",
|
| 1345 |
+
"_model_module_version": "1.5.0",
|
| 1346 |
+
"_model_name": "HTMLModel",
|
| 1347 |
+
"_view_count": null,
|
| 1348 |
+
"_view_module": "@jupyter-widgets/controls",
|
| 1349 |
+
"_view_module_version": "1.5.0",
|
| 1350 |
+
"_view_name": "HTMLView",
|
| 1351 |
+
"description": "",
|
| 1352 |
+
"description_tooltip": null,
|
| 1353 |
+
"layout": "IPY_MODEL_8361dc2e0a834da6a0ad87f7b0cb4e1b",
|
| 1354 |
+
"placeholder": "",
|
| 1355 |
+
"style": "IPY_MODEL_56f1d9d56dd44c8aa923d09a59cb0ebc",
|
| 1356 |
+
"value": "Running tokenizer on dataset: 98%"
|
| 1357 |
+
}
|
| 1358 |
+
},
|
| 1359 |
+
"56f1d9d56dd44c8aa923d09a59cb0ebc": {
|
| 1360 |
+
"model_module": "@jupyter-widgets/controls",
|
| 1361 |
+
"model_module_version": "1.5.0",
|
| 1362 |
+
"model_name": "DescriptionStyleModel",
|
| 1363 |
+
"state": {
|
| 1364 |
+
"_model_module": "@jupyter-widgets/controls",
|
| 1365 |
+
"_model_module_version": "1.5.0",
|
| 1366 |
+
"_model_name": "DescriptionStyleModel",
|
| 1367 |
+
"_view_count": null,
|
| 1368 |
+
"_view_module": "@jupyter-widgets/base",
|
| 1369 |
+
"_view_module_version": "1.2.0",
|
| 1370 |
+
"_view_name": "StyleView",
|
| 1371 |
+
"description_width": ""
|
| 1372 |
+
}
|
| 1373 |
+
},
|
| 1374 |
+
"5b1bdaf16cbc473081e4237f839167b9": {
|
| 1375 |
+
"model_module": "@jupyter-widgets/base",
|
| 1376 |
+
"model_module_version": "1.2.0",
|
| 1377 |
+
"model_name": "LayoutModel",
|
| 1378 |
+
"state": {
|
| 1379 |
+
"_model_module": "@jupyter-widgets/base",
|
| 1380 |
+
"_model_module_version": "1.2.0",
|
| 1381 |
+
"_model_name": "LayoutModel",
|
| 1382 |
+
"_view_count": null,
|
| 1383 |
+
"_view_module": "@jupyter-widgets/base",
|
| 1384 |
+
"_view_module_version": "1.2.0",
|
| 1385 |
+
"_view_name": "LayoutView",
|
| 1386 |
+
"align_content": null,
|
| 1387 |
+
"align_items": null,
|
| 1388 |
+
"align_self": null,
|
| 1389 |
+
"border": null,
|
| 1390 |
+
"bottom": null,
|
| 1391 |
+
"display": null,
|
| 1392 |
+
"flex": null,
|
| 1393 |
+
"flex_flow": null,
|
| 1394 |
+
"grid_area": null,
|
| 1395 |
+
"grid_auto_columns": null,
|
| 1396 |
+
"grid_auto_flow": null,
|
| 1397 |
+
"grid_auto_rows": null,
|
| 1398 |
+
"grid_column": null,
|
| 1399 |
+
"grid_gap": null,
|
| 1400 |
+
"grid_row": null,
|
| 1401 |
+
"grid_template_areas": null,
|
| 1402 |
+
"grid_template_columns": null,
|
| 1403 |
+
"grid_template_rows": null,
|
| 1404 |
+
"height": null,
|
| 1405 |
+
"justify_content": null,
|
| 1406 |
+
"justify_items": null,
|
| 1407 |
+
"left": null,
|
| 1408 |
+
"margin": null,
|
| 1409 |
+
"max_height": null,
|
| 1410 |
+
"max_width": null,
|
| 1411 |
+
"min_height": null,
|
| 1412 |
+
"min_width": null,
|
| 1413 |
+
"object_fit": null,
|
| 1414 |
+
"object_position": null,
|
| 1415 |
+
"order": null,
|
| 1416 |
+
"overflow": null,
|
| 1417 |
+
"overflow_x": null,
|
| 1418 |
+
"overflow_y": null,
|
| 1419 |
+
"padding": null,
|
| 1420 |
+
"right": null,
|
| 1421 |
+
"top": null,
|
| 1422 |
+
"visibility": null,
|
| 1423 |
+
"width": null
|
| 1424 |
+
}
|
| 1425 |
+
},
|
| 1426 |
+
"5e5aa58adb0f48579871df33845e30b1": {
|
| 1427 |
+
"model_module": "@jupyter-widgets/base",
|
| 1428 |
+
"model_module_version": "1.2.0",
|
| 1429 |
+
"model_name": "LayoutModel",
|
| 1430 |
+
"state": {
|
| 1431 |
+
"_model_module": "@jupyter-widgets/base",
|
| 1432 |
+
"_model_module_version": "1.2.0",
|
| 1433 |
+
"_model_name": "LayoutModel",
|
| 1434 |
+
"_view_count": null,
|
| 1435 |
+
"_view_module": "@jupyter-widgets/base",
|
| 1436 |
+
"_view_module_version": "1.2.0",
|
| 1437 |
+
"_view_name": "LayoutView",
|
| 1438 |
+
"align_content": null,
|
| 1439 |
+
"align_items": null,
|
| 1440 |
+
"align_self": null,
|
| 1441 |
+
"border": null,
|
| 1442 |
+
"bottom": null,
|
| 1443 |
+
"display": null,
|
| 1444 |
+
"flex": null,
|
| 1445 |
+
"flex_flow": null,
|
| 1446 |
+
"grid_area": null,
|
| 1447 |
+
"grid_auto_columns": null,
|
| 1448 |
+
"grid_auto_flow": null,
|
| 1449 |
+
"grid_auto_rows": null,
|
| 1450 |
+
"grid_column": null,
|
| 1451 |
+
"grid_gap": null,
|
| 1452 |
+
"grid_row": null,
|
| 1453 |
+
"grid_template_areas": null,
|
| 1454 |
+
"grid_template_columns": null,
|
| 1455 |
+
"grid_template_rows": null,
|
| 1456 |
+
"height": null,
|
| 1457 |
+
"justify_content": null,
|
| 1458 |
+
"justify_items": null,
|
| 1459 |
+
"left": null,
|
| 1460 |
+
"margin": null,
|
| 1461 |
+
"max_height": null,
|
| 1462 |
+
"max_width": null,
|
| 1463 |
+
"min_height": null,
|
| 1464 |
+
"min_width": null,
|
| 1465 |
+
"object_fit": null,
|
| 1466 |
+
"object_position": null,
|
| 1467 |
+
"order": null,
|
| 1468 |
+
"overflow": null,
|
| 1469 |
+
"overflow_x": null,
|
| 1470 |
+
"overflow_y": null,
|
| 1471 |
+
"padding": null,
|
| 1472 |
+
"right": null,
|
| 1473 |
+
"top": null,
|
| 1474 |
+
"visibility": null,
|
| 1475 |
+
"width": null
|
| 1476 |
+
}
|
| 1477 |
+
},
|
| 1478 |
+
"661e1b29c59a4295b594edfa4f50ff87": {
|
| 1479 |
+
"model_module": "@jupyter-widgets/controls",
|
| 1480 |
+
"model_module_version": "1.5.0",
|
| 1481 |
+
"model_name": "HTMLModel",
|
| 1482 |
+
"state": {
|
| 1483 |
+
"_dom_classes": [],
|
| 1484 |
+
"_model_module": "@jupyter-widgets/controls",
|
| 1485 |
+
"_model_module_version": "1.5.0",
|
| 1486 |
+
"_model_name": "HTMLModel",
|
| 1487 |
+
"_view_count": null,
|
| 1488 |
+
"_view_module": "@jupyter-widgets/controls",
|
| 1489 |
+
"_view_module_version": "1.5.0",
|
| 1490 |
+
"_view_name": "HTMLView",
|
| 1491 |
+
"description": "",
|
| 1492 |
+
"description_tooltip": null,
|
| 1493 |
+
"layout": "IPY_MODEL_b138f91be7f94008806eaf0a6988bc3f",
|
| 1494 |
+
"placeholder": "",
|
| 1495 |
+
"style": "IPY_MODEL_da14180f51ab44b48470cb9ea74d3864",
|
| 1496 |
+
"value": " 1/1 [00:00<00:00, 67.12it/s]"
|
| 1497 |
+
}
|
| 1498 |
+
},
|
| 1499 |
+
"664c02903cb248fb9339805bccfd6c1d": {
|
| 1500 |
+
"model_module": "@jupyter-widgets/base",
|
| 1501 |
+
"model_module_version": "1.2.0",
|
| 1502 |
+
"model_name": "LayoutModel",
|
| 1503 |
+
"state": {
|
| 1504 |
+
"_model_module": "@jupyter-widgets/base",
|
| 1505 |
+
"_model_module_version": "1.2.0",
|
| 1506 |
+
"_model_name": "LayoutModel",
|
| 1507 |
+
"_view_count": null,
|
| 1508 |
+
"_view_module": "@jupyter-widgets/base",
|
| 1509 |
+
"_view_module_version": "1.2.0",
|
| 1510 |
+
"_view_name": "LayoutView",
|
| 1511 |
+
"align_content": null,
|
| 1512 |
+
"align_items": null,
|
| 1513 |
+
"align_self": null,
|
| 1514 |
+
"border": null,
|
| 1515 |
+
"bottom": null,
|
| 1516 |
+
"display": null,
|
| 1517 |
+
"flex": null,
|
| 1518 |
+
"flex_flow": null,
|
| 1519 |
+
"grid_area": null,
|
| 1520 |
+
"grid_auto_columns": null,
|
| 1521 |
+
"grid_auto_flow": null,
|
| 1522 |
+
"grid_auto_rows": null,
|
| 1523 |
+
"grid_column": null,
|
| 1524 |
+
"grid_gap": null,
|
| 1525 |
+
"grid_row": null,
|
| 1526 |
+
"grid_template_areas": null,
|
| 1527 |
+
"grid_template_columns": null,
|
| 1528 |
+
"grid_template_rows": null,
|
| 1529 |
+
"height": null,
|
| 1530 |
+
"justify_content": null,
|
| 1531 |
+
"justify_items": null,
|
| 1532 |
+
"left": null,
|
| 1533 |
+
"margin": null,
|
| 1534 |
+
"max_height": null,
|
| 1535 |
+
"max_width": null,
|
| 1536 |
+
"min_height": null,
|
| 1537 |
+
"min_width": null,
|
| 1538 |
+
"object_fit": null,
|
| 1539 |
+
"object_position": null,
|
| 1540 |
+
"order": null,
|
| 1541 |
+
"overflow": null,
|
| 1542 |
+
"overflow_x": null,
|
| 1543 |
+
"overflow_y": null,
|
| 1544 |
+
"padding": null,
|
| 1545 |
+
"right": null,
|
| 1546 |
+
"top": null,
|
| 1547 |
+
"visibility": null,
|
| 1548 |
+
"width": null
|
| 1549 |
+
}
|
| 1550 |
+
},
|
| 1551 |
+
"6a567e0a1a5447519c5df10e777520cf": {
|
| 1552 |
+
"model_module": "@jupyter-widgets/controls",
|
| 1553 |
+
"model_module_version": "1.5.0",
|
| 1554 |
+
"model_name": "DescriptionStyleModel",
|
| 1555 |
+
"state": {
|
| 1556 |
+
"_model_module": "@jupyter-widgets/controls",
|
| 1557 |
+
"_model_module_version": "1.5.0",
|
| 1558 |
+
"_model_name": "DescriptionStyleModel",
|
| 1559 |
+
"_view_count": null,
|
| 1560 |
+
"_view_module": "@jupyter-widgets/base",
|
| 1561 |
+
"_view_module_version": "1.2.0",
|
| 1562 |
+
"_view_name": "StyleView",
|
| 1563 |
+
"description_width": ""
|
| 1564 |
+
}
|
| 1565 |
+
},
|
| 1566 |
+
"6f9453484ea94587a64d70f1b3a1f6e4": {
|
| 1567 |
+
"model_module": "@jupyter-widgets/base",
|
| 1568 |
+
"model_module_version": "1.2.0",
|
| 1569 |
+
"model_name": "LayoutModel",
|
| 1570 |
+
"state": {
|
| 1571 |
+
"_model_module": "@jupyter-widgets/base",
|
| 1572 |
+
"_model_module_version": "1.2.0",
|
| 1573 |
+
"_model_name": "LayoutModel",
|
| 1574 |
+
"_view_count": null,
|
| 1575 |
+
"_view_module": "@jupyter-widgets/base",
|
| 1576 |
+
"_view_module_version": "1.2.0",
|
| 1577 |
+
"_view_name": "LayoutView",
|
| 1578 |
+
"align_content": null,
|
| 1579 |
+
"align_items": null,
|
| 1580 |
+
"align_self": null,
|
| 1581 |
+
"border": null,
|
| 1582 |
+
"bottom": null,
|
| 1583 |
+
"display": null,
|
| 1584 |
+
"flex": null,
|
| 1585 |
+
"flex_flow": null,
|
| 1586 |
+
"grid_area": null,
|
| 1587 |
+
"grid_auto_columns": null,
|
| 1588 |
+
"grid_auto_flow": null,
|
| 1589 |
+
"grid_auto_rows": null,
|
| 1590 |
+
"grid_column": null,
|
| 1591 |
+
"grid_gap": null,
|
| 1592 |
+
"grid_row": null,
|
| 1593 |
+
"grid_template_areas": null,
|
| 1594 |
+
"grid_template_columns": null,
|
| 1595 |
+
"grid_template_rows": null,
|
| 1596 |
+
"height": null,
|
| 1597 |
+
"justify_content": null,
|
| 1598 |
+
"justify_items": null,
|
| 1599 |
+
"left": null,
|
| 1600 |
+
"margin": null,
|
| 1601 |
+
"max_height": null,
|
| 1602 |
+
"max_width": null,
|
| 1603 |
+
"min_height": null,
|
| 1604 |
+
"min_width": null,
|
| 1605 |
+
"object_fit": null,
|
| 1606 |
+
"object_position": null,
|
| 1607 |
+
"order": null,
|
| 1608 |
+
"overflow": null,
|
| 1609 |
+
"overflow_x": null,
|
| 1610 |
+
"overflow_y": null,
|
| 1611 |
+
"padding": null,
|
| 1612 |
+
"right": null,
|
| 1613 |
+
"top": null,
|
| 1614 |
+
"visibility": null,
|
| 1615 |
+
"width": null
|
| 1616 |
+
}
|
| 1617 |
+
},
|
| 1618 |
+
"71bcdb1e02144c9587879d8d815b91d4": {
|
| 1619 |
+
"model_module": "@jupyter-widgets/controls",
|
| 1620 |
+
"model_module_version": "1.5.0",
|
| 1621 |
+
"model_name": "DescriptionStyleModel",
|
| 1622 |
+
"state": {
|
| 1623 |
+
"_model_module": "@jupyter-widgets/controls",
|
| 1624 |
+
"_model_module_version": "1.5.0",
|
| 1625 |
+
"_model_name": "DescriptionStyleModel",
|
| 1626 |
+
"_view_count": null,
|
| 1627 |
+
"_view_module": "@jupyter-widgets/base",
|
| 1628 |
+
"_view_module_version": "1.2.0",
|
| 1629 |
+
"_view_name": "StyleView",
|
| 1630 |
+
"description_width": ""
|
| 1631 |
+
}
|
| 1632 |
+
},
|
| 1633 |
+
"72383136663448d89cf3b82b87cbb392": {
|
| 1634 |
+
"model_module": "@jupyter-widgets/controls",
|
| 1635 |
+
"model_module_version": "1.5.0",
|
| 1636 |
+
"model_name": "DescriptionStyleModel",
|
| 1637 |
+
"state": {
|
| 1638 |
+
"_model_module": "@jupyter-widgets/controls",
|
| 1639 |
+
"_model_module_version": "1.5.0",
|
| 1640 |
+
"_model_name": "DescriptionStyleModel",
|
| 1641 |
+
"_view_count": null,
|
| 1642 |
+
"_view_module": "@jupyter-widgets/base",
|
| 1643 |
+
"_view_module_version": "1.2.0",
|
| 1644 |
+
"_view_name": "StyleView",
|
| 1645 |
+
"description_width": ""
|
| 1646 |
+
}
|
| 1647 |
+
},
|
| 1648 |
+
"749aaa39135841f98b344ffb840df3d4": {
|
| 1649 |
+
"model_module": "@jupyter-widgets/controls",
|
| 1650 |
+
"model_module_version": "1.5.0",
|
| 1651 |
+
"model_name": "ProgressStyleModel",
|
| 1652 |
+
"state": {
|
| 1653 |
+
"_model_module": "@jupyter-widgets/controls",
|
| 1654 |
+
"_model_module_version": "1.5.0",
|
| 1655 |
+
"_model_name": "ProgressStyleModel",
|
| 1656 |
+
"_view_count": null,
|
| 1657 |
+
"_view_module": "@jupyter-widgets/base",
|
| 1658 |
+
"_view_module_version": "1.2.0",
|
| 1659 |
+
"_view_name": "StyleView",
|
| 1660 |
+
"bar_color": null,
|
| 1661 |
+
"description_width": ""
|
| 1662 |
+
}
|
| 1663 |
+
},
|
| 1664 |
+
"79d0ede7a5b24756aa6d34fda8c29159": {
|
| 1665 |
+
"model_module": "@jupyter-widgets/controls",
|
| 1666 |
+
"model_module_version": "1.5.0",
|
| 1667 |
+
"model_name": "FloatProgressModel",
|
| 1668 |
+
"state": {
|
| 1669 |
+
"_dom_classes": [],
|
| 1670 |
+
"_model_module": "@jupyter-widgets/controls",
|
| 1671 |
+
"_model_module_version": "1.5.0",
|
| 1672 |
+
"_model_name": "FloatProgressModel",
|
| 1673 |
+
"_view_count": null,
|
| 1674 |
+
"_view_module": "@jupyter-widgets/controls",
|
| 1675 |
+
"_view_module_version": "1.5.0",
|
| 1676 |
+
"_view_name": "ProgressView",
|
| 1677 |
+
"bar_style": "",
|
| 1678 |
+
"description": "",
|
| 1679 |
+
"description_tooltip": null,
|
| 1680 |
+
"layout": "IPY_MODEL_ca509bd409624c998e555c9a779b8aae",
|
| 1681 |
+
"max": 2037,
|
| 1682 |
+
"min": 0,
|
| 1683 |
+
"orientation": "horizontal",
|
| 1684 |
+
"style": "IPY_MODEL_9c890fc422954347b86d3bde7a421caf",
|
| 1685 |
+
"value": 2037
|
| 1686 |
+
}
|
| 1687 |
+
},
|
| 1688 |
+
"7aeca19b84904906a04c12659f84ff9e": {
|
| 1689 |
+
"model_module": "@jupyter-widgets/base",
|
| 1690 |
+
"model_module_version": "1.2.0",
|
| 1691 |
+
"model_name": "LayoutModel",
|
| 1692 |
+
"state": {
|
| 1693 |
+
"_model_module": "@jupyter-widgets/base",
|
| 1694 |
+
"_model_module_version": "1.2.0",
|
| 1695 |
+
"_model_name": "LayoutModel",
|
| 1696 |
+
"_view_count": null,
|
| 1697 |
+
"_view_module": "@jupyter-widgets/base",
|
| 1698 |
+
"_view_module_version": "1.2.0",
|
| 1699 |
+
"_view_name": "LayoutView",
|
| 1700 |
+
"align_content": null,
|
| 1701 |
+
"align_items": null,
|
| 1702 |
+
"align_self": null,
|
| 1703 |
+
"border": null,
|
| 1704 |
+
"bottom": null,
|
| 1705 |
+
"display": null,
|
| 1706 |
+
"flex": null,
|
| 1707 |
+
"flex_flow": null,
|
| 1708 |
+
"grid_area": null,
|
| 1709 |
+
"grid_auto_columns": null,
|
| 1710 |
+
"grid_auto_flow": null,
|
| 1711 |
+
"grid_auto_rows": null,
|
| 1712 |
+
"grid_column": null,
|
| 1713 |
+
"grid_gap": null,
|
| 1714 |
+
"grid_row": null,
|
| 1715 |
+
"grid_template_areas": null,
|
| 1716 |
+
"grid_template_columns": null,
|
| 1717 |
+
"grid_template_rows": null,
|
| 1718 |
+
"height": null,
|
| 1719 |
+
"justify_content": null,
|
| 1720 |
+
"justify_items": null,
|
| 1721 |
+
"left": null,
|
| 1722 |
+
"margin": null,
|
| 1723 |
+
"max_height": null,
|
| 1724 |
+
"max_width": null,
|
| 1725 |
+
"min_height": null,
|
| 1726 |
+
"min_width": null,
|
| 1727 |
+
"object_fit": null,
|
| 1728 |
+
"object_position": null,
|
| 1729 |
+
"order": null,
|
| 1730 |
+
"overflow": null,
|
| 1731 |
+
"overflow_x": null,
|
| 1732 |
+
"overflow_y": null,
|
| 1733 |
+
"padding": null,
|
| 1734 |
+
"right": null,
|
| 1735 |
+
"top": null,
|
| 1736 |
+
"visibility": null,
|
| 1737 |
+
"width": null
|
| 1738 |
+
}
|
| 1739 |
+
},
|
| 1740 |
+
"82195b807b664a9585a76e0e50fe7609": {
|
| 1741 |
+
"model_module": "@jupyter-widgets/controls",
|
| 1742 |
+
"model_module_version": "1.5.0",
|
| 1743 |
+
"model_name": "ProgressStyleModel",
|
| 1744 |
+
"state": {
|
| 1745 |
+
"_model_module": "@jupyter-widgets/controls",
|
| 1746 |
+
"_model_module_version": "1.5.0",
|
| 1747 |
+
"_model_name": "ProgressStyleModel",
|
| 1748 |
+
"_view_count": null,
|
| 1749 |
+
"_view_module": "@jupyter-widgets/base",
|
| 1750 |
+
"_view_module_version": "1.2.0",
|
| 1751 |
+
"_view_name": "StyleView",
|
| 1752 |
+
"bar_color": null,
|
| 1753 |
+
"description_width": ""
|
| 1754 |
+
}
|
| 1755 |
+
},
|
| 1756 |
+
"8361dc2e0a834da6a0ad87f7b0cb4e1b": {
|
| 1757 |
+
"model_module": "@jupyter-widgets/base",
|
| 1758 |
+
"model_module_version": "1.2.0",
|
| 1759 |
+
"model_name": "LayoutModel",
|
| 1760 |
+
"state": {
|
| 1761 |
+
"_model_module": "@jupyter-widgets/base",
|
| 1762 |
+
"_model_module_version": "1.2.0",
|
| 1763 |
+
"_model_name": "LayoutModel",
|
| 1764 |
+
"_view_count": null,
|
| 1765 |
+
"_view_module": "@jupyter-widgets/base",
|
| 1766 |
+
"_view_module_version": "1.2.0",
|
| 1767 |
+
"_view_name": "LayoutView",
|
| 1768 |
+
"align_content": null,
|
| 1769 |
+
"align_items": null,
|
| 1770 |
+
"align_self": null,
|
| 1771 |
+
"border": null,
|
| 1772 |
+
"bottom": null,
|
| 1773 |
+
"display": null,
|
| 1774 |
+
"flex": null,
|
| 1775 |
+
"flex_flow": null,
|
| 1776 |
+
"grid_area": null,
|
| 1777 |
+
"grid_auto_columns": null,
|
| 1778 |
+
"grid_auto_flow": null,
|
| 1779 |
+
"grid_auto_rows": null,
|
| 1780 |
+
"grid_column": null,
|
| 1781 |
+
"grid_gap": null,
|
| 1782 |
+
"grid_row": null,
|
| 1783 |
+
"grid_template_areas": null,
|
| 1784 |
+
"grid_template_columns": null,
|
| 1785 |
+
"grid_template_rows": null,
|
| 1786 |
+
"height": null,
|
| 1787 |
+
"justify_content": null,
|
| 1788 |
+
"justify_items": null,
|
| 1789 |
+
"left": null,
|
| 1790 |
+
"margin": null,
|
| 1791 |
+
"max_height": null,
|
| 1792 |
+
"max_width": null,
|
| 1793 |
+
"min_height": null,
|
| 1794 |
+
"min_width": null,
|
| 1795 |
+
"object_fit": null,
|
| 1796 |
+
"object_position": null,
|
| 1797 |
+
"order": null,
|
| 1798 |
+
"overflow": null,
|
| 1799 |
+
"overflow_x": null,
|
| 1800 |
+
"overflow_y": null,
|
| 1801 |
+
"padding": null,
|
| 1802 |
+
"right": null,
|
| 1803 |
+
"top": null,
|
| 1804 |
+
"visibility": null,
|
| 1805 |
+
"width": null
|
| 1806 |
+
}
|
| 1807 |
+
},
|
| 1808 |
+
"8621932be14f42858d841e2ac1b173e7": {
|
| 1809 |
+
"model_module": "@jupyter-widgets/base",
|
| 1810 |
+
"model_module_version": "1.2.0",
|
| 1811 |
+
"model_name": "LayoutModel",
|
| 1812 |
+
"state": {
|
| 1813 |
+
"_model_module": "@jupyter-widgets/base",
|
| 1814 |
+
"_model_module_version": "1.2.0",
|
| 1815 |
+
"_model_name": "LayoutModel",
|
| 1816 |
+
"_view_count": null,
|
| 1817 |
+
"_view_module": "@jupyter-widgets/base",
|
| 1818 |
+
"_view_module_version": "1.2.0",
|
| 1819 |
+
"_view_name": "LayoutView",
|
| 1820 |
+
"align_content": null,
|
| 1821 |
+
"align_items": null,
|
| 1822 |
+
"align_self": null,
|
| 1823 |
+
"border": null,
|
| 1824 |
+
"bottom": null,
|
| 1825 |
+
"display": null,
|
| 1826 |
+
"flex": null,
|
| 1827 |
+
"flex_flow": null,
|
| 1828 |
+
"grid_area": null,
|
| 1829 |
+
"grid_auto_columns": null,
|
| 1830 |
+
"grid_auto_flow": null,
|
| 1831 |
+
"grid_auto_rows": null,
|
| 1832 |
+
"grid_column": null,
|
| 1833 |
+
"grid_gap": null,
|
| 1834 |
+
"grid_row": null,
|
| 1835 |
+
"grid_template_areas": null,
|
| 1836 |
+
"grid_template_columns": null,
|
| 1837 |
+
"grid_template_rows": null,
|
| 1838 |
+
"height": null,
|
| 1839 |
+
"justify_content": null,
|
| 1840 |
+
"justify_items": null,
|
| 1841 |
+
"left": null,
|
| 1842 |
+
"margin": null,
|
| 1843 |
+
"max_height": null,
|
| 1844 |
+
"max_width": null,
|
| 1845 |
+
"min_height": null,
|
| 1846 |
+
"min_width": null,
|
| 1847 |
+
"object_fit": null,
|
| 1848 |
+
"object_position": null,
|
| 1849 |
+
"order": null,
|
| 1850 |
+
"overflow": null,
|
| 1851 |
+
"overflow_x": null,
|
| 1852 |
+
"overflow_y": null,
|
| 1853 |
+
"padding": null,
|
| 1854 |
+
"right": null,
|
| 1855 |
+
"top": null,
|
| 1856 |
+
"visibility": null,
|
| 1857 |
+
"width": null
|
| 1858 |
+
}
|
| 1859 |
+
},
|
| 1860 |
+
"86bf02b06ed740a88015c2b944205c1e": {
|
| 1861 |
+
"model_module": "@jupyter-widgets/base",
|
| 1862 |
+
"model_module_version": "1.2.0",
|
| 1863 |
+
"model_name": "LayoutModel",
|
| 1864 |
+
"state": {
|
| 1865 |
+
"_model_module": "@jupyter-widgets/base",
|
| 1866 |
+
"_model_module_version": "1.2.0",
|
| 1867 |
+
"_model_name": "LayoutModel",
|
| 1868 |
+
"_view_count": null,
|
| 1869 |
+
"_view_module": "@jupyter-widgets/base",
|
| 1870 |
+
"_view_module_version": "1.2.0",
|
| 1871 |
+
"_view_name": "LayoutView",
|
| 1872 |
+
"align_content": null,
|
| 1873 |
+
"align_items": null,
|
| 1874 |
+
"align_self": null,
|
| 1875 |
+
"border": null,
|
| 1876 |
+
"bottom": null,
|
| 1877 |
+
"display": null,
|
| 1878 |
+
"flex": null,
|
| 1879 |
+
"flex_flow": null,
|
| 1880 |
+
"grid_area": null,
|
| 1881 |
+
"grid_auto_columns": null,
|
| 1882 |
+
"grid_auto_flow": null,
|
| 1883 |
+
"grid_auto_rows": null,
|
| 1884 |
+
"grid_column": null,
|
| 1885 |
+
"grid_gap": null,
|
| 1886 |
+
"grid_row": null,
|
| 1887 |
+
"grid_template_areas": null,
|
| 1888 |
+
"grid_template_columns": null,
|
| 1889 |
+
"grid_template_rows": null,
|
| 1890 |
+
"height": null,
|
| 1891 |
+
"justify_content": null,
|
| 1892 |
+
"justify_items": null,
|
| 1893 |
+
"left": null,
|
| 1894 |
+
"margin": null,
|
| 1895 |
+
"max_height": null,
|
| 1896 |
+
"max_width": null,
|
| 1897 |
+
"min_height": null,
|
| 1898 |
+
"min_width": null,
|
| 1899 |
+
"object_fit": null,
|
| 1900 |
+
"object_position": null,
|
| 1901 |
+
"order": null,
|
| 1902 |
+
"overflow": null,
|
| 1903 |
+
"overflow_x": null,
|
| 1904 |
+
"overflow_y": null,
|
| 1905 |
+
"padding": null,
|
| 1906 |
+
"right": null,
|
| 1907 |
+
"top": null,
|
| 1908 |
+
"visibility": null,
|
| 1909 |
+
"width": null
|
| 1910 |
+
}
|
| 1911 |
+
},
|
| 1912 |
+
"8ba99043c350456d8623ce1d8c98f7a0": {
|
| 1913 |
+
"model_module": "@jupyter-widgets/controls",
|
| 1914 |
+
"model_module_version": "1.5.0",
|
| 1915 |
+
"model_name": "FloatProgressModel",
|
| 1916 |
+
"state": {
|
| 1917 |
+
"_dom_classes": [],
|
| 1918 |
+
"_model_module": "@jupyter-widgets/controls",
|
| 1919 |
+
"_model_module_version": "1.5.0",
|
| 1920 |
+
"_model_name": "FloatProgressModel",
|
| 1921 |
+
"_view_count": null,
|
| 1922 |
+
"_view_module": "@jupyter-widgets/controls",
|
| 1923 |
+
"_view_module_version": "1.5.0",
|
| 1924 |
+
"_view_name": "ProgressView",
|
| 1925 |
+
"bar_style": "",
|
| 1926 |
+
"description": "",
|
| 1927 |
+
"description_tooltip": null,
|
| 1928 |
+
"layout": "IPY_MODEL_664c02903cb248fb9339805bccfd6c1d",
|
| 1929 |
+
"max": 227,
|
| 1930 |
+
"min": 0,
|
| 1931 |
+
"orientation": "horizontal",
|
| 1932 |
+
"style": "IPY_MODEL_82195b807b664a9585a76e0e50fe7609",
|
| 1933 |
+
"value": 227
|
| 1934 |
+
}
|
| 1935 |
+
},
|
| 1936 |
+
"8bf37c12d5f74f7d8dbba423a9ee3ac3": {
|
| 1937 |
+
"model_module": "@jupyter-widgets/controls",
|
| 1938 |
+
"model_module_version": "1.5.0",
|
| 1939 |
+
"model_name": "HTMLModel",
|
| 1940 |
+
"state": {
|
| 1941 |
+
"_dom_classes": [],
|
| 1942 |
+
"_model_module": "@jupyter-widgets/controls",
|
| 1943 |
+
"_model_module_version": "1.5.0",
|
| 1944 |
+
"_model_name": "HTMLModel",
|
| 1945 |
+
"_view_count": null,
|
| 1946 |
+
"_view_module": "@jupyter-widgets/controls",
|
| 1947 |
+
"_view_module_version": "1.5.0",
|
| 1948 |
+
"_view_name": "HTMLView",
|
| 1949 |
+
"description": "",
|
| 1950 |
+
"description_tooltip": null,
|
| 1951 |
+
"layout": "IPY_MODEL_8621932be14f42858d841e2ac1b173e7",
|
| 1952 |
+
"placeholder": "",
|
| 1953 |
+
"style": "IPY_MODEL_71bcdb1e02144c9587879d8d815b91d4",
|
| 1954 |
+
"value": " 0/227 [00:00<?, ? examples/s]"
|
| 1955 |
+
}
|
| 1956 |
+
},
|
| 1957 |
+
"94174da0d6554be087d4527bea5b511a": {
|
| 1958 |
+
"model_module": "@jupyter-widgets/base",
|
| 1959 |
+
"model_module_version": "1.2.0",
|
| 1960 |
+
"model_name": "LayoutModel",
|
| 1961 |
+
"state": {
|
| 1962 |
+
"_model_module": "@jupyter-widgets/base",
|
| 1963 |
+
"_model_module_version": "1.2.0",
|
| 1964 |
+
"_model_name": "LayoutModel",
|
| 1965 |
+
"_view_count": null,
|
| 1966 |
+
"_view_module": "@jupyter-widgets/base",
|
| 1967 |
+
"_view_module_version": "1.2.0",
|
| 1968 |
+
"_view_name": "LayoutView",
|
| 1969 |
+
"align_content": null,
|
| 1970 |
+
"align_items": null,
|
| 1971 |
+
"align_self": null,
|
| 1972 |
+
"border": null,
|
| 1973 |
+
"bottom": null,
|
| 1974 |
+
"display": null,
|
| 1975 |
+
"flex": null,
|
| 1976 |
+
"flex_flow": null,
|
| 1977 |
+
"grid_area": null,
|
| 1978 |
+
"grid_auto_columns": null,
|
| 1979 |
+
"grid_auto_flow": null,
|
| 1980 |
+
"grid_auto_rows": null,
|
| 1981 |
+
"grid_column": null,
|
| 1982 |
+
"grid_gap": null,
|
| 1983 |
+
"grid_row": null,
|
| 1984 |
+
"grid_template_areas": null,
|
| 1985 |
+
"grid_template_columns": null,
|
| 1986 |
+
"grid_template_rows": null,
|
| 1987 |
+
"height": null,
|
| 1988 |
+
"justify_content": null,
|
| 1989 |
+
"justify_items": null,
|
| 1990 |
+
"left": null,
|
| 1991 |
+
"margin": null,
|
| 1992 |
+
"max_height": null,
|
| 1993 |
+
"max_width": null,
|
| 1994 |
+
"min_height": null,
|
| 1995 |
+
"min_width": null,
|
| 1996 |
+
"object_fit": null,
|
| 1997 |
+
"object_position": null,
|
| 1998 |
+
"order": null,
|
| 1999 |
+
"overflow": null,
|
| 2000 |
+
"overflow_x": null,
|
| 2001 |
+
"overflow_y": null,
|
| 2002 |
+
"padding": null,
|
| 2003 |
+
"right": null,
|
| 2004 |
+
"top": null,
|
| 2005 |
+
"visibility": "hidden",
|
| 2006 |
+
"width": null
|
| 2007 |
+
}
|
| 2008 |
+
},
|
| 2009 |
+
"9c890fc422954347b86d3bde7a421caf": {
|
| 2010 |
+
"model_module": "@jupyter-widgets/controls",
|
| 2011 |
+
"model_module_version": "1.5.0",
|
| 2012 |
+
"model_name": "ProgressStyleModel",
|
| 2013 |
+
"state": {
|
| 2014 |
+
"_model_module": "@jupyter-widgets/controls",
|
| 2015 |
+
"_model_module_version": "1.5.0",
|
| 2016 |
+
"_model_name": "ProgressStyleModel",
|
| 2017 |
+
"_view_count": null,
|
| 2018 |
+
"_view_module": "@jupyter-widgets/base",
|
| 2019 |
+
"_view_module_version": "1.2.0",
|
| 2020 |
+
"_view_name": "StyleView",
|
| 2021 |
+
"bar_color": null,
|
| 2022 |
+
"description_width": ""
|
| 2023 |
+
}
|
| 2024 |
+
},
|
| 2025 |
+
"9e12d97af6124a5a8c6627708b300c1e": {
|
| 2026 |
+
"model_module": "@jupyter-widgets/controls",
|
| 2027 |
+
"model_module_version": "1.5.0",
|
| 2028 |
+
"model_name": "HBoxModel",
|
| 2029 |
+
"state": {
|
| 2030 |
+
"_dom_classes": [],
|
| 2031 |
+
"_model_module": "@jupyter-widgets/controls",
|
| 2032 |
+
"_model_module_version": "1.5.0",
|
| 2033 |
+
"_model_name": "HBoxModel",
|
| 2034 |
+
"_view_count": null,
|
| 2035 |
+
"_view_module": "@jupyter-widgets/controls",
|
| 2036 |
+
"_view_module_version": "1.5.0",
|
| 2037 |
+
"_view_name": "HBoxView",
|
| 2038 |
+
"box_style": "",
|
| 2039 |
+
"children": [
|
| 2040 |
+
"IPY_MODEL_faa18df899c14e9cac6721253e6c9128",
|
| 2041 |
+
"IPY_MODEL_79d0ede7a5b24756aa6d34fda8c29159",
|
| 2042 |
+
"IPY_MODEL_3b175b452f4347558aa3c4501cc90030"
|
| 2043 |
+
],
|
| 2044 |
+
"layout": "IPY_MODEL_fc4637a1b37e4e90874c71aa4271ac74"
|
| 2045 |
+
}
|
| 2046 |
+
},
|
| 2047 |
+
"a5a126b229064812bf3dcb228118be50": {
|
| 2048 |
+
"model_module": "@jupyter-widgets/controls",
|
| 2049 |
+
"model_module_version": "1.5.0",
|
| 2050 |
+
"model_name": "FloatProgressModel",
|
| 2051 |
+
"state": {
|
| 2052 |
+
"_dom_classes": [],
|
| 2053 |
+
"_model_module": "@jupyter-widgets/controls",
|
| 2054 |
+
"_model_module_version": "1.5.0",
|
| 2055 |
+
"_model_name": "FloatProgressModel",
|
| 2056 |
+
"_view_count": null,
|
| 2057 |
+
"_view_module": "@jupyter-widgets/controls",
|
| 2058 |
+
"_view_module_version": "1.5.0",
|
| 2059 |
+
"_view_name": "ProgressView",
|
| 2060 |
+
"bar_style": "success",
|
| 2061 |
+
"description": "",
|
| 2062 |
+
"description_tooltip": null,
|
| 2063 |
+
"layout": "IPY_MODEL_7aeca19b84904906a04c12659f84ff9e",
|
| 2064 |
+
"max": 1,
|
| 2065 |
+
"min": 0,
|
| 2066 |
+
"orientation": "horizontal",
|
| 2067 |
+
"style": "IPY_MODEL_dd4b895874ce46ceb1ad0d9bc973f98f",
|
| 2068 |
+
"value": 1
|
| 2069 |
+
}
|
| 2070 |
+
},
|
| 2071 |
+
"a91916e02e9c424e881e45b3aa978574": {
|
| 2072 |
+
"model_module": "@jupyter-widgets/controls",
|
| 2073 |
+
"model_module_version": "1.5.0",
|
| 2074 |
+
"model_name": "DescriptionStyleModel",
|
| 2075 |
+
"state": {
|
| 2076 |
+
"_model_module": "@jupyter-widgets/controls",
|
| 2077 |
+
"_model_module_version": "1.5.0",
|
| 2078 |
+
"_model_name": "DescriptionStyleModel",
|
| 2079 |
+
"_view_count": null,
|
| 2080 |
+
"_view_module": "@jupyter-widgets/base",
|
| 2081 |
+
"_view_module_version": "1.2.0",
|
| 2082 |
+
"_view_name": "StyleView",
|
| 2083 |
+
"description_width": ""
|
| 2084 |
+
}
|
| 2085 |
+
},
|
| 2086 |
+
"aae78f9bd53348bda45967a38736cb78": {
|
| 2087 |
+
"model_module": "@jupyter-widgets/controls",
|
| 2088 |
+
"model_module_version": "1.5.0",
|
| 2089 |
+
"model_name": "HTMLModel",
|
| 2090 |
+
"state": {
|
| 2091 |
+
"_dom_classes": [],
|
| 2092 |
+
"_model_module": "@jupyter-widgets/controls",
|
| 2093 |
+
"_model_module_version": "1.5.0",
|
| 2094 |
+
"_model_name": "HTMLModel",
|
| 2095 |
+
"_view_count": null,
|
| 2096 |
+
"_view_module": "@jupyter-widgets/controls",
|
| 2097 |
+
"_view_module_version": "1.5.0",
|
| 2098 |
+
"_view_name": "HTMLView",
|
| 2099 |
+
"description": "",
|
| 2100 |
+
"description_tooltip": null,
|
| 2101 |
+
"layout": "IPY_MODEL_5e5aa58adb0f48579871df33845e30b1",
|
| 2102 |
+
"placeholder": "",
|
| 2103 |
+
"style": "IPY_MODEL_c25b49b7adaa48a0a3a306aa1e0661b4",
|
| 2104 |
+
"value": " 2000/2037 [00:00<00:00, 3864.28 examples/s]"
|
| 2105 |
+
}
|
| 2106 |
+
},
|
| 2107 |
+
"aef6a6be67f749908060d8038b6d3804": {
|
| 2108 |
+
"model_module": "@jupyter-widgets/controls",
|
| 2109 |
+
"model_module_version": "1.5.0",
|
| 2110 |
+
"model_name": "DescriptionStyleModel",
|
| 2111 |
+
"state": {
|
| 2112 |
+
"_model_module": "@jupyter-widgets/controls",
|
| 2113 |
+
"_model_module_version": "1.5.0",
|
| 2114 |
+
"_model_name": "DescriptionStyleModel",
|
| 2115 |
+
"_view_count": null,
|
| 2116 |
+
"_view_module": "@jupyter-widgets/base",
|
| 2117 |
+
"_view_module_version": "1.2.0",
|
| 2118 |
+
"_view_name": "StyleView",
|
| 2119 |
+
"description_width": ""
|
| 2120 |
+
}
|
| 2121 |
+
},
|
| 2122 |
+
"b138f91be7f94008806eaf0a6988bc3f": {
|
| 2123 |
+
"model_module": "@jupyter-widgets/base",
|
| 2124 |
+
"model_module_version": "1.2.0",
|
| 2125 |
+
"model_name": "LayoutModel",
|
| 2126 |
+
"state": {
|
| 2127 |
+
"_model_module": "@jupyter-widgets/base",
|
| 2128 |
+
"_model_module_version": "1.2.0",
|
| 2129 |
+
"_model_name": "LayoutModel",
|
| 2130 |
+
"_view_count": null,
|
| 2131 |
+
"_view_module": "@jupyter-widgets/base",
|
| 2132 |
+
"_view_module_version": "1.2.0",
|
| 2133 |
+
"_view_name": "LayoutView",
|
| 2134 |
+
"align_content": null,
|
| 2135 |
+
"align_items": null,
|
| 2136 |
+
"align_self": null,
|
| 2137 |
+
"border": null,
|
| 2138 |
+
"bottom": null,
|
| 2139 |
+
"display": null,
|
| 2140 |
+
"flex": null,
|
| 2141 |
+
"flex_flow": null,
|
| 2142 |
+
"grid_area": null,
|
| 2143 |
+
"grid_auto_columns": null,
|
| 2144 |
+
"grid_auto_flow": null,
|
| 2145 |
+
"grid_auto_rows": null,
|
| 2146 |
+
"grid_column": null,
|
| 2147 |
+
"grid_gap": null,
|
| 2148 |
+
"grid_row": null,
|
| 2149 |
+
"grid_template_areas": null,
|
| 2150 |
+
"grid_template_columns": null,
|
| 2151 |
+
"grid_template_rows": null,
|
| 2152 |
+
"height": null,
|
| 2153 |
+
"justify_content": null,
|
| 2154 |
+
"justify_items": null,
|
| 2155 |
+
"left": null,
|
| 2156 |
+
"margin": null,
|
| 2157 |
+
"max_height": null,
|
| 2158 |
+
"max_width": null,
|
| 2159 |
+
"min_height": null,
|
| 2160 |
+
"min_width": null,
|
| 2161 |
+
"object_fit": null,
|
| 2162 |
+
"object_position": null,
|
| 2163 |
+
"order": null,
|
| 2164 |
+
"overflow": null,
|
| 2165 |
+
"overflow_x": null,
|
| 2166 |
+
"overflow_y": null,
|
| 2167 |
+
"padding": null,
|
| 2168 |
+
"right": null,
|
| 2169 |
+
"top": null,
|
| 2170 |
+
"visibility": null,
|
| 2171 |
+
"width": null
|
| 2172 |
+
}
|
| 2173 |
+
},
|
| 2174 |
+
"bbfb7533b5ca459194e171df56b79566": {
|
| 2175 |
+
"model_module": "@jupyter-widgets/controls",
|
| 2176 |
+
"model_module_version": "1.5.0",
|
| 2177 |
+
"model_name": "HBoxModel",
|
| 2178 |
+
"state": {
|
| 2179 |
+
"_dom_classes": [],
|
| 2180 |
+
"_model_module": "@jupyter-widgets/controls",
|
| 2181 |
+
"_model_module_version": "1.5.0",
|
| 2182 |
+
"_model_name": "HBoxModel",
|
| 2183 |
+
"_view_count": null,
|
| 2184 |
+
"_view_module": "@jupyter-widgets/controls",
|
| 2185 |
+
"_view_module_version": "1.5.0",
|
| 2186 |
+
"_view_name": "HBoxView",
|
| 2187 |
+
"box_style": "",
|
| 2188 |
+
"children": [
|
| 2189 |
+
"IPY_MODEL_c894e8237aa34c56bb250acab1466005",
|
| 2190 |
+
"IPY_MODEL_a5a126b229064812bf3dcb228118be50",
|
| 2191 |
+
"IPY_MODEL_661e1b29c59a4295b594edfa4f50ff87"
|
| 2192 |
+
],
|
| 2193 |
+
"layout": "IPY_MODEL_1bcba805972b484d8b6aa6542c81841c"
|
| 2194 |
+
}
|
| 2195 |
+
},
|
| 2196 |
+
"c25b49b7adaa48a0a3a306aa1e0661b4": {
|
| 2197 |
+
"model_module": "@jupyter-widgets/controls",
|
| 2198 |
+
"model_module_version": "1.5.0",
|
| 2199 |
+
"model_name": "DescriptionStyleModel",
|
| 2200 |
+
"state": {
|
| 2201 |
+
"_model_module": "@jupyter-widgets/controls",
|
| 2202 |
+
"_model_module_version": "1.5.0",
|
| 2203 |
+
"_model_name": "DescriptionStyleModel",
|
| 2204 |
+
"_view_count": null,
|
| 2205 |
+
"_view_module": "@jupyter-widgets/base",
|
| 2206 |
+
"_view_module_version": "1.2.0",
|
| 2207 |
+
"_view_name": "StyleView",
|
| 2208 |
+
"description_width": ""
|
| 2209 |
+
}
|
| 2210 |
+
},
|
| 2211 |
+
"c894e8237aa34c56bb250acab1466005": {
|
| 2212 |
+
"model_module": "@jupyter-widgets/controls",
|
| 2213 |
+
"model_module_version": "1.5.0",
|
| 2214 |
+
"model_name": "HTMLModel",
|
| 2215 |
+
"state": {
|
| 2216 |
+
"_dom_classes": [],
|
| 2217 |
+
"_model_module": "@jupyter-widgets/controls",
|
| 2218 |
+
"_model_module_version": "1.5.0",
|
| 2219 |
+
"_model_name": "HTMLModel",
|
| 2220 |
+
"_view_count": null,
|
| 2221 |
+
"_view_module": "@jupyter-widgets/controls",
|
| 2222 |
+
"_view_module_version": "1.5.0",
|
| 2223 |
+
"_view_name": "HTMLView",
|
| 2224 |
+
"description": "",
|
| 2225 |
+
"description_tooltip": null,
|
| 2226 |
+
"layout": "IPY_MODEL_e71f5c7f1d5d4f83b58c68d2fa310d9c",
|
| 2227 |
+
"placeholder": "",
|
| 2228 |
+
"style": "IPY_MODEL_6a567e0a1a5447519c5df10e777520cf",
|
| 2229 |
+
"value": "100%"
|
| 2230 |
+
}
|
| 2231 |
+
},
|
| 2232 |
+
"ca509bd409624c998e555c9a779b8aae": {
|
| 2233 |
+
"model_module": "@jupyter-widgets/base",
|
| 2234 |
+
"model_module_version": "1.2.0",
|
| 2235 |
+
"model_name": "LayoutModel",
|
| 2236 |
+
"state": {
|
| 2237 |
+
"_model_module": "@jupyter-widgets/base",
|
| 2238 |
+
"_model_module_version": "1.2.0",
|
| 2239 |
+
"_model_name": "LayoutModel",
|
| 2240 |
+
"_view_count": null,
|
| 2241 |
+
"_view_module": "@jupyter-widgets/base",
|
| 2242 |
+
"_view_module_version": "1.2.0",
|
| 2243 |
+
"_view_name": "LayoutView",
|
| 2244 |
+
"align_content": null,
|
| 2245 |
+
"align_items": null,
|
| 2246 |
+
"align_self": null,
|
| 2247 |
+
"border": null,
|
| 2248 |
+
"bottom": null,
|
| 2249 |
+
"display": null,
|
| 2250 |
+
"flex": null,
|
| 2251 |
+
"flex_flow": null,
|
| 2252 |
+
"grid_area": null,
|
| 2253 |
+
"grid_auto_columns": null,
|
| 2254 |
+
"grid_auto_flow": null,
|
| 2255 |
+
"grid_auto_rows": null,
|
| 2256 |
+
"grid_column": null,
|
| 2257 |
+
"grid_gap": null,
|
| 2258 |
+
"grid_row": null,
|
| 2259 |
+
"grid_template_areas": null,
|
| 2260 |
+
"grid_template_columns": null,
|
| 2261 |
+
"grid_template_rows": null,
|
| 2262 |
+
"height": null,
|
| 2263 |
+
"justify_content": null,
|
| 2264 |
+
"justify_items": null,
|
| 2265 |
+
"left": null,
|
| 2266 |
+
"margin": null,
|
| 2267 |
+
"max_height": null,
|
| 2268 |
+
"max_width": null,
|
| 2269 |
+
"min_height": null,
|
| 2270 |
+
"min_width": null,
|
| 2271 |
+
"object_fit": null,
|
| 2272 |
+
"object_position": null,
|
| 2273 |
+
"order": null,
|
| 2274 |
+
"overflow": null,
|
| 2275 |
+
"overflow_x": null,
|
| 2276 |
+
"overflow_y": null,
|
| 2277 |
+
"padding": null,
|
| 2278 |
+
"right": null,
|
| 2279 |
+
"top": null,
|
| 2280 |
+
"visibility": null,
|
| 2281 |
+
"width": null
|
| 2282 |
+
}
|
| 2283 |
+
},
|
| 2284 |
+
"d93bfb366db14c2fa77b038752f69b38": {
|
| 2285 |
+
"model_module": "@jupyter-widgets/base",
|
| 2286 |
+
"model_module_version": "1.2.0",
|
| 2287 |
+
"model_name": "LayoutModel",
|
| 2288 |
+
"state": {
|
| 2289 |
+
"_model_module": "@jupyter-widgets/base",
|
| 2290 |
+
"_model_module_version": "1.2.0",
|
| 2291 |
+
"_model_name": "LayoutModel",
|
| 2292 |
+
"_view_count": null,
|
| 2293 |
+
"_view_module": "@jupyter-widgets/base",
|
| 2294 |
+
"_view_module_version": "1.2.0",
|
| 2295 |
+
"_view_name": "LayoutView",
|
| 2296 |
+
"align_content": null,
|
| 2297 |
+
"align_items": null,
|
| 2298 |
+
"align_self": null,
|
| 2299 |
+
"border": null,
|
| 2300 |
+
"bottom": null,
|
| 2301 |
+
"display": null,
|
| 2302 |
+
"flex": null,
|
| 2303 |
+
"flex_flow": null,
|
| 2304 |
+
"grid_area": null,
|
| 2305 |
+
"grid_auto_columns": null,
|
| 2306 |
+
"grid_auto_flow": null,
|
| 2307 |
+
"grid_auto_rows": null,
|
| 2308 |
+
"grid_column": null,
|
| 2309 |
+
"grid_gap": null,
|
| 2310 |
+
"grid_row": null,
|
| 2311 |
+
"grid_template_areas": null,
|
| 2312 |
+
"grid_template_columns": null,
|
| 2313 |
+
"grid_template_rows": null,
|
| 2314 |
+
"height": null,
|
| 2315 |
+
"justify_content": null,
|
| 2316 |
+
"justify_items": null,
|
| 2317 |
+
"left": null,
|
| 2318 |
+
"margin": null,
|
| 2319 |
+
"max_height": null,
|
| 2320 |
+
"max_width": null,
|
| 2321 |
+
"min_height": null,
|
| 2322 |
+
"min_width": null,
|
| 2323 |
+
"object_fit": null,
|
| 2324 |
+
"object_position": null,
|
| 2325 |
+
"order": null,
|
| 2326 |
+
"overflow": null,
|
| 2327 |
+
"overflow_x": null,
|
| 2328 |
+
"overflow_y": null,
|
| 2329 |
+
"padding": null,
|
| 2330 |
+
"right": null,
|
| 2331 |
+
"top": null,
|
| 2332 |
+
"visibility": null,
|
| 2333 |
+
"width": null
|
| 2334 |
+
}
|
| 2335 |
+
},
|
| 2336 |
+
"d9d37b8b79f24dbf837327a250a5a346": {
|
| 2337 |
+
"model_module": "@jupyter-widgets/controls",
|
| 2338 |
+
"model_module_version": "1.5.0",
|
| 2339 |
+
"model_name": "HTMLModel",
|
| 2340 |
+
"state": {
|
| 2341 |
+
"_dom_classes": [],
|
| 2342 |
+
"_model_module": "@jupyter-widgets/controls",
|
| 2343 |
+
"_model_module_version": "1.5.0",
|
| 2344 |
+
"_model_name": "HTMLModel",
|
| 2345 |
+
"_view_count": null,
|
| 2346 |
+
"_view_module": "@jupyter-widgets/controls",
|
| 2347 |
+
"_view_module_version": "1.5.0",
|
| 2348 |
+
"_view_name": "HTMLView",
|
| 2349 |
+
"description": "",
|
| 2350 |
+
"description_tooltip": null,
|
| 2351 |
+
"layout": "IPY_MODEL_86bf02b06ed740a88015c2b944205c1e",
|
| 2352 |
+
"placeholder": "",
|
| 2353 |
+
"style": "IPY_MODEL_aef6a6be67f749908060d8038b6d3804",
|
| 2354 |
+
"value": "Running tokenizer on dataset: 0%"
|
| 2355 |
+
}
|
| 2356 |
+
},
|
| 2357 |
+
"da14180f51ab44b48470cb9ea74d3864": {
|
| 2358 |
+
"model_module": "@jupyter-widgets/controls",
|
| 2359 |
+
"model_module_version": "1.5.0",
|
| 2360 |
+
"model_name": "DescriptionStyleModel",
|
| 2361 |
+
"state": {
|
| 2362 |
+
"_model_module": "@jupyter-widgets/controls",
|
| 2363 |
+
"_model_module_version": "1.5.0",
|
| 2364 |
+
"_model_name": "DescriptionStyleModel",
|
| 2365 |
+
"_view_count": null,
|
| 2366 |
+
"_view_module": "@jupyter-widgets/base",
|
| 2367 |
+
"_view_module_version": "1.2.0",
|
| 2368 |
+
"_view_name": "StyleView",
|
| 2369 |
+
"description_width": ""
|
| 2370 |
+
}
|
| 2371 |
+
},
|
| 2372 |
+
"dc8ab16a1e6c4e6893c95ccd16568f9a": {
|
| 2373 |
+
"model_module": "@jupyter-widgets/base",
|
| 2374 |
+
"model_module_version": "1.2.0",
|
| 2375 |
+
"model_name": "LayoutModel",
|
| 2376 |
+
"state": {
|
| 2377 |
+
"_model_module": "@jupyter-widgets/base",
|
| 2378 |
+
"_model_module_version": "1.2.0",
|
| 2379 |
+
"_model_name": "LayoutModel",
|
| 2380 |
+
"_view_count": null,
|
| 2381 |
+
"_view_module": "@jupyter-widgets/base",
|
| 2382 |
+
"_view_module_version": "1.2.0",
|
| 2383 |
+
"_view_name": "LayoutView",
|
| 2384 |
+
"align_content": null,
|
| 2385 |
+
"align_items": null,
|
| 2386 |
+
"align_self": null,
|
| 2387 |
+
"border": null,
|
| 2388 |
+
"bottom": null,
|
| 2389 |
+
"display": null,
|
| 2390 |
+
"flex": null,
|
| 2391 |
+
"flex_flow": null,
|
| 2392 |
+
"grid_area": null,
|
| 2393 |
+
"grid_auto_columns": null,
|
| 2394 |
+
"grid_auto_flow": null,
|
| 2395 |
+
"grid_auto_rows": null,
|
| 2396 |
+
"grid_column": null,
|
| 2397 |
+
"grid_gap": null,
|
| 2398 |
+
"grid_row": null,
|
| 2399 |
+
"grid_template_areas": null,
|
| 2400 |
+
"grid_template_columns": null,
|
| 2401 |
+
"grid_template_rows": null,
|
| 2402 |
+
"height": null,
|
| 2403 |
+
"justify_content": null,
|
| 2404 |
+
"justify_items": null,
|
| 2405 |
+
"left": null,
|
| 2406 |
+
"margin": null,
|
| 2407 |
+
"max_height": null,
|
| 2408 |
+
"max_width": null,
|
| 2409 |
+
"min_height": null,
|
| 2410 |
+
"min_width": null,
|
| 2411 |
+
"object_fit": null,
|
| 2412 |
+
"object_position": null,
|
| 2413 |
+
"order": null,
|
| 2414 |
+
"overflow": null,
|
| 2415 |
+
"overflow_x": null,
|
| 2416 |
+
"overflow_y": null,
|
| 2417 |
+
"padding": null,
|
| 2418 |
+
"right": null,
|
| 2419 |
+
"top": null,
|
| 2420 |
+
"visibility": null,
|
| 2421 |
+
"width": null
|
| 2422 |
+
}
|
| 2423 |
+
},
|
| 2424 |
+
"dd4b895874ce46ceb1ad0d9bc973f98f": {
|
| 2425 |
+
"model_module": "@jupyter-widgets/controls",
|
| 2426 |
+
"model_module_version": "1.5.0",
|
| 2427 |
+
"model_name": "ProgressStyleModel",
|
| 2428 |
+
"state": {
|
| 2429 |
+
"_model_module": "@jupyter-widgets/controls",
|
| 2430 |
+
"_model_module_version": "1.5.0",
|
| 2431 |
+
"_model_name": "ProgressStyleModel",
|
| 2432 |
+
"_view_count": null,
|
| 2433 |
+
"_view_module": "@jupyter-widgets/base",
|
| 2434 |
+
"_view_module_version": "1.2.0",
|
| 2435 |
+
"_view_name": "StyleView",
|
| 2436 |
+
"bar_color": null,
|
| 2437 |
+
"description_width": ""
|
| 2438 |
+
}
|
| 2439 |
+
},
|
| 2440 |
+
"e1e80a68a9e7429397cafc96c3c11f80": {
|
| 2441 |
+
"model_module": "@jupyter-widgets/controls",
|
| 2442 |
+
"model_module_version": "1.5.0",
|
| 2443 |
+
"model_name": "HBoxModel",
|
| 2444 |
+
"state": {
|
| 2445 |
+
"_dom_classes": [],
|
| 2446 |
+
"_model_module": "@jupyter-widgets/controls",
|
| 2447 |
+
"_model_module_version": "1.5.0",
|
| 2448 |
+
"_model_name": "HBoxModel",
|
| 2449 |
+
"_view_count": null,
|
| 2450 |
+
"_view_module": "@jupyter-widgets/controls",
|
| 2451 |
+
"_view_module_version": "1.5.0",
|
| 2452 |
+
"_view_name": "HBoxView",
|
| 2453 |
+
"box_style": "",
|
| 2454 |
+
"children": [
|
| 2455 |
+
"IPY_MODEL_5307864c2b1143f4b44f3f172611113e",
|
| 2456 |
+
"IPY_MODEL_2e2b6c3f48974ea4aca9b7710a03379e",
|
| 2457 |
+
"IPY_MODEL_aae78f9bd53348bda45967a38736cb78"
|
| 2458 |
+
],
|
| 2459 |
+
"layout": "IPY_MODEL_34db17e0f28d40d6abafb8acd5dda379"
|
| 2460 |
+
}
|
| 2461 |
+
},
|
| 2462 |
+
"e71f5c7f1d5d4f83b58c68d2fa310d9c": {
|
| 2463 |
+
"model_module": "@jupyter-widgets/base",
|
| 2464 |
+
"model_module_version": "1.2.0",
|
| 2465 |
+
"model_name": "LayoutModel",
|
| 2466 |
+
"state": {
|
| 2467 |
+
"_model_module": "@jupyter-widgets/base",
|
| 2468 |
+
"_model_module_version": "1.2.0",
|
| 2469 |
+
"_model_name": "LayoutModel",
|
| 2470 |
+
"_view_count": null,
|
| 2471 |
+
"_view_module": "@jupyter-widgets/base",
|
| 2472 |
+
"_view_module_version": "1.2.0",
|
| 2473 |
+
"_view_name": "LayoutView",
|
| 2474 |
+
"align_content": null,
|
| 2475 |
+
"align_items": null,
|
| 2476 |
+
"align_self": null,
|
| 2477 |
+
"border": null,
|
| 2478 |
+
"bottom": null,
|
| 2479 |
+
"display": null,
|
| 2480 |
+
"flex": null,
|
| 2481 |
+
"flex_flow": null,
|
| 2482 |
+
"grid_area": null,
|
| 2483 |
+
"grid_auto_columns": null,
|
| 2484 |
+
"grid_auto_flow": null,
|
| 2485 |
+
"grid_auto_rows": null,
|
| 2486 |
+
"grid_column": null,
|
| 2487 |
+
"grid_gap": null,
|
| 2488 |
+
"grid_row": null,
|
| 2489 |
+
"grid_template_areas": null,
|
| 2490 |
+
"grid_template_columns": null,
|
| 2491 |
+
"grid_template_rows": null,
|
| 2492 |
+
"height": null,
|
| 2493 |
+
"justify_content": null,
|
| 2494 |
+
"justify_items": null,
|
| 2495 |
+
"left": null,
|
| 2496 |
+
"margin": null,
|
| 2497 |
+
"max_height": null,
|
| 2498 |
+
"max_width": null,
|
| 2499 |
+
"min_height": null,
|
| 2500 |
+
"min_width": null,
|
| 2501 |
+
"object_fit": null,
|
| 2502 |
+
"object_position": null,
|
| 2503 |
+
"order": null,
|
| 2504 |
+
"overflow": null,
|
| 2505 |
+
"overflow_x": null,
|
| 2506 |
+
"overflow_y": null,
|
| 2507 |
+
"padding": null,
|
| 2508 |
+
"right": null,
|
| 2509 |
+
"top": null,
|
| 2510 |
+
"visibility": null,
|
| 2511 |
+
"width": null
|
| 2512 |
+
}
|
| 2513 |
+
},
|
| 2514 |
+
"f60e9915d2a74ca7bc010d7684f5acf6": {
|
| 2515 |
+
"model_module": "@jupyter-widgets/controls",
|
| 2516 |
+
"model_module_version": "1.5.0",
|
| 2517 |
+
"model_name": "DescriptionStyleModel",
|
| 2518 |
+
"state": {
|
| 2519 |
+
"_model_module": "@jupyter-widgets/controls",
|
| 2520 |
+
"_model_module_version": "1.5.0",
|
| 2521 |
+
"_model_name": "DescriptionStyleModel",
|
| 2522 |
+
"_view_count": null,
|
| 2523 |
+
"_view_module": "@jupyter-widgets/base",
|
| 2524 |
+
"_view_module_version": "1.2.0",
|
| 2525 |
+
"_view_name": "StyleView",
|
| 2526 |
+
"description_width": ""
|
| 2527 |
+
}
|
| 2528 |
+
},
|
| 2529 |
+
"f760cd4758334ca9a43fd15612fd808b": {
|
| 2530 |
+
"model_module": "@jupyter-widgets/base",
|
| 2531 |
+
"model_module_version": "1.2.0",
|
| 2532 |
+
"model_name": "LayoutModel",
|
| 2533 |
+
"state": {
|
| 2534 |
+
"_model_module": "@jupyter-widgets/base",
|
| 2535 |
+
"_model_module_version": "1.2.0",
|
| 2536 |
+
"_model_name": "LayoutModel",
|
| 2537 |
+
"_view_count": null,
|
| 2538 |
+
"_view_module": "@jupyter-widgets/base",
|
| 2539 |
+
"_view_module_version": "1.2.0",
|
| 2540 |
+
"_view_name": "LayoutView",
|
| 2541 |
+
"align_content": null,
|
| 2542 |
+
"align_items": null,
|
| 2543 |
+
"align_self": null,
|
| 2544 |
+
"border": null,
|
| 2545 |
+
"bottom": null,
|
| 2546 |
+
"display": null,
|
| 2547 |
+
"flex": null,
|
| 2548 |
+
"flex_flow": null,
|
| 2549 |
+
"grid_area": null,
|
| 2550 |
+
"grid_auto_columns": null,
|
| 2551 |
+
"grid_auto_flow": null,
|
| 2552 |
+
"grid_auto_rows": null,
|
| 2553 |
+
"grid_column": null,
|
| 2554 |
+
"grid_gap": null,
|
| 2555 |
+
"grid_row": null,
|
| 2556 |
+
"grid_template_areas": null,
|
| 2557 |
+
"grid_template_columns": null,
|
| 2558 |
+
"grid_template_rows": null,
|
| 2559 |
+
"height": null,
|
| 2560 |
+
"justify_content": null,
|
| 2561 |
+
"justify_items": null,
|
| 2562 |
+
"left": null,
|
| 2563 |
+
"margin": null,
|
| 2564 |
+
"max_height": null,
|
| 2565 |
+
"max_width": null,
|
| 2566 |
+
"min_height": null,
|
| 2567 |
+
"min_width": null,
|
| 2568 |
+
"object_fit": null,
|
| 2569 |
+
"object_position": null,
|
| 2570 |
+
"order": null,
|
| 2571 |
+
"overflow": null,
|
| 2572 |
+
"overflow_x": null,
|
| 2573 |
+
"overflow_y": null,
|
| 2574 |
+
"padding": null,
|
| 2575 |
+
"right": null,
|
| 2576 |
+
"top": null,
|
| 2577 |
+
"visibility": null,
|
| 2578 |
+
"width": null
|
| 2579 |
+
}
|
| 2580 |
+
},
|
| 2581 |
+
"f9d86ad7fa734f3a857505a542256a3c": {
|
| 2582 |
+
"model_module": "@jupyter-widgets/base",
|
| 2583 |
+
"model_module_version": "1.2.0",
|
| 2584 |
+
"model_name": "LayoutModel",
|
| 2585 |
+
"state": {
|
| 2586 |
+
"_model_module": "@jupyter-widgets/base",
|
| 2587 |
+
"_model_module_version": "1.2.0",
|
| 2588 |
+
"_model_name": "LayoutModel",
|
| 2589 |
+
"_view_count": null,
|
| 2590 |
+
"_view_module": "@jupyter-widgets/base",
|
| 2591 |
+
"_view_module_version": "1.2.0",
|
| 2592 |
+
"_view_name": "LayoutView",
|
| 2593 |
+
"align_content": null,
|
| 2594 |
+
"align_items": null,
|
| 2595 |
+
"align_self": null,
|
| 2596 |
+
"border": null,
|
| 2597 |
+
"bottom": null,
|
| 2598 |
+
"display": null,
|
| 2599 |
+
"flex": null,
|
| 2600 |
+
"flex_flow": null,
|
| 2601 |
+
"grid_area": null,
|
| 2602 |
+
"grid_auto_columns": null,
|
| 2603 |
+
"grid_auto_flow": null,
|
| 2604 |
+
"grid_auto_rows": null,
|
| 2605 |
+
"grid_column": null,
|
| 2606 |
+
"grid_gap": null,
|
| 2607 |
+
"grid_row": null,
|
| 2608 |
+
"grid_template_areas": null,
|
| 2609 |
+
"grid_template_columns": null,
|
| 2610 |
+
"grid_template_rows": null,
|
| 2611 |
+
"height": null,
|
| 2612 |
+
"justify_content": null,
|
| 2613 |
+
"justify_items": null,
|
| 2614 |
+
"left": null,
|
| 2615 |
+
"margin": null,
|
| 2616 |
+
"max_height": null,
|
| 2617 |
+
"max_width": null,
|
| 2618 |
+
"min_height": null,
|
| 2619 |
+
"min_width": null,
|
| 2620 |
+
"object_fit": null,
|
| 2621 |
+
"object_position": null,
|
| 2622 |
+
"order": null,
|
| 2623 |
+
"overflow": null,
|
| 2624 |
+
"overflow_x": null,
|
| 2625 |
+
"overflow_y": null,
|
| 2626 |
+
"padding": null,
|
| 2627 |
+
"right": null,
|
| 2628 |
+
"top": null,
|
| 2629 |
+
"visibility": "hidden",
|
| 2630 |
+
"width": null
|
| 2631 |
+
}
|
| 2632 |
+
},
|
| 2633 |
+
"faa18df899c14e9cac6721253e6c9128": {
|
| 2634 |
+
"model_module": "@jupyter-widgets/controls",
|
| 2635 |
+
"model_module_version": "1.5.0",
|
| 2636 |
+
"model_name": "HTMLModel",
|
| 2637 |
+
"state": {
|
| 2638 |
+
"_dom_classes": [],
|
| 2639 |
+
"_model_module": "@jupyter-widgets/controls",
|
| 2640 |
+
"_model_module_version": "1.5.0",
|
| 2641 |
+
"_model_name": "HTMLModel",
|
| 2642 |
+
"_view_count": null,
|
| 2643 |
+
"_view_module": "@jupyter-widgets/controls",
|
| 2644 |
+
"_view_module_version": "1.5.0",
|
| 2645 |
+
"_view_name": "HTMLView",
|
| 2646 |
+
"description": "",
|
| 2647 |
+
"description_tooltip": null,
|
| 2648 |
+
"layout": "IPY_MODEL_1b8aada826a0451bb60c418b19178c8c",
|
| 2649 |
+
"placeholder": "",
|
| 2650 |
+
"style": "IPY_MODEL_a91916e02e9c424e881e45b3aa978574",
|
| 2651 |
+
"value": "Map: 0%"
|
| 2652 |
+
}
|
| 2653 |
+
},
|
| 2654 |
+
"fc4637a1b37e4e90874c71aa4271ac74": {
|
| 2655 |
+
"model_module": "@jupyter-widgets/base",
|
| 2656 |
+
"model_module_version": "1.2.0",
|
| 2657 |
+
"model_name": "LayoutModel",
|
| 2658 |
+
"state": {
|
| 2659 |
+
"_model_module": "@jupyter-widgets/base",
|
| 2660 |
+
"_model_module_version": "1.2.0",
|
| 2661 |
+
"_model_name": "LayoutModel",
|
| 2662 |
+
"_view_count": null,
|
| 2663 |
+
"_view_module": "@jupyter-widgets/base",
|
| 2664 |
+
"_view_module_version": "1.2.0",
|
| 2665 |
+
"_view_name": "LayoutView",
|
| 2666 |
+
"align_content": null,
|
| 2667 |
+
"align_items": null,
|
| 2668 |
+
"align_self": null,
|
| 2669 |
+
"border": null,
|
| 2670 |
+
"bottom": null,
|
| 2671 |
+
"display": null,
|
| 2672 |
+
"flex": null,
|
| 2673 |
+
"flex_flow": null,
|
| 2674 |
+
"grid_area": null,
|
| 2675 |
+
"grid_auto_columns": null,
|
| 2676 |
+
"grid_auto_flow": null,
|
| 2677 |
+
"grid_auto_rows": null,
|
| 2678 |
+
"grid_column": null,
|
| 2679 |
+
"grid_gap": null,
|
| 2680 |
+
"grid_row": null,
|
| 2681 |
+
"grid_template_areas": null,
|
| 2682 |
+
"grid_template_columns": null,
|
| 2683 |
+
"grid_template_rows": null,
|
| 2684 |
+
"height": null,
|
| 2685 |
+
"justify_content": null,
|
| 2686 |
+
"justify_items": null,
|
| 2687 |
+
"left": null,
|
| 2688 |
+
"margin": null,
|
| 2689 |
+
"max_height": null,
|
| 2690 |
+
"max_width": null,
|
| 2691 |
+
"min_height": null,
|
| 2692 |
+
"min_width": null,
|
| 2693 |
+
"object_fit": null,
|
| 2694 |
+
"object_position": null,
|
| 2695 |
+
"order": null,
|
| 2696 |
+
"overflow": null,
|
| 2697 |
+
"overflow_x": null,
|
| 2698 |
+
"overflow_y": null,
|
| 2699 |
+
"padding": null,
|
| 2700 |
+
"right": null,
|
| 2701 |
+
"top": null,
|
| 2702 |
+
"visibility": "hidden",
|
| 2703 |
+
"width": null
|
| 2704 |
+
}
|
| 2705 |
+
}
|
| 2706 |
+
}
|
| 2707 |
+
}
|
| 2708 |
+
},
|
| 2709 |
+
"nbformat": 4,
|
| 2710 |
+
"nbformat_minor": 5
|
| 2711 |
+
}
|
peft_lora_seq2seq.ipynb
ADDED
|
@@ -0,0 +1,486 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"cells": [
|
| 3 |
+
{
|
| 4 |
+
"cell_type": "code",
|
| 5 |
+
"execution_count": 1,
|
| 6 |
+
"id": "5f93b7d1",
|
| 7 |
+
"metadata": {},
|
| 8 |
+
"outputs": [
|
| 9 |
+
{
|
| 10 |
+
"name": "stdout",
|
| 11 |
+
"output_type": "stream",
|
| 12 |
+
"text": [
|
| 13 |
+
"\n",
|
| 14 |
+
"===================================BUG REPORT===================================\n",
|
| 15 |
+
"Welcome to bitsandbytes. For bug reports, please submit your error trace to: https://github.com/TimDettmers/bitsandbytes/issues\n",
|
| 16 |
+
"For effortless bug reporting copy-paste your error into this form: https://docs.google.com/forms/d/e/1FAIpQLScPB8emS3Thkp66nvqwmjTEgxp8Y9ufuWTzFyr9kJ5AoI47dQ/viewform?usp=sf_link\n",
|
| 17 |
+
"================================================================================\n",
|
| 18 |
+
"CUDA SETUP: CUDA runtime path found: /home/sourab/miniconda3/envs/ml/lib/libcudart.so\n",
|
| 19 |
+
"CUDA SETUP: Highest compute capability among GPUs detected: 7.5\n",
|
| 20 |
+
"CUDA SETUP: Detected CUDA version 117\n",
|
| 21 |
+
"CUDA SETUP: Loading binary /home/sourab/miniconda3/envs/ml/lib/python3.10/site-packages/bitsandbytes/libbitsandbytes_cuda117.so...\n"
|
| 22 |
+
]
|
| 23 |
+
}
|
| 24 |
+
],
|
| 25 |
+
"source": [
|
| 26 |
+
"from transformers import AutoModelForSeq2SeqLM\n",
|
| 27 |
+
"from peft import get_peft_config, get_peft_model, get_peft_model_state_dict, LoraConfig, TaskType\n",
|
| 28 |
+
"import torch\n",
|
| 29 |
+
"from datasets import load_dataset\n",
|
| 30 |
+
"import os\n",
|
| 31 |
+
"\n",
|
| 32 |
+
"os.environ[\"TOKENIZERS_PARALLELISM\"] = \"false\"\n",
|
| 33 |
+
"from transformers import AutoTokenizer\n",
|
| 34 |
+
"from torch.utils.data import DataLoader\n",
|
| 35 |
+
"from transformers import default_data_collator, get_linear_schedule_with_warmup\n",
|
| 36 |
+
"from tqdm import tqdm\n",
|
| 37 |
+
"from datasets import load_dataset\n",
|
| 38 |
+
"\n",
|
| 39 |
+
"device = \"cuda\"\n",
|
| 40 |
+
"model_name_or_path = \"bigscience/mt0-large\"\n",
|
| 41 |
+
"tokenizer_name_or_path = \"bigscience/mt0-large\"\n",
|
| 42 |
+
"\n",
|
| 43 |
+
"checkpoint_name = \"financial_sentiment_analysis_lora_v1.pt\"\n",
|
| 44 |
+
"text_column = \"sentence\"\n",
|
| 45 |
+
"label_column = \"text_label\"\n",
|
| 46 |
+
"max_length = 128\n",
|
| 47 |
+
"lr = 1e-3\n",
|
| 48 |
+
"num_epochs = 3\n",
|
| 49 |
+
"batch_size = 8"
|
| 50 |
+
]
|
| 51 |
+
},
|
| 52 |
+
{
|
| 53 |
+
"cell_type": "code",
|
| 54 |
+
"execution_count": null,
|
| 55 |
+
"id": "8d0850ac",
|
| 56 |
+
"metadata": {},
|
| 57 |
+
"outputs": [],
|
| 58 |
+
"source": [
|
| 59 |
+
"# creating model\n",
|
| 60 |
+
"peft_config = LoraConfig(task_type=TaskType.SEQ_2_SEQ_LM, inference_mode=False, r=8, lora_alpha=32, lora_dropout=0.1)\n",
|
| 61 |
+
"\n",
|
| 62 |
+
"model = AutoModelForSeq2SeqLM.from_pretrained(model_name_or_path)\n",
|
| 63 |
+
"model = get_peft_model(model, peft_config)\n",
|
| 64 |
+
"model.print_trainable_parameters()\n",
|
| 65 |
+
"model"
|
| 66 |
+
]
|
| 67 |
+
},
|
| 68 |
+
{
|
| 69 |
+
"cell_type": "code",
|
| 70 |
+
"execution_count": 3,
|
| 71 |
+
"id": "4ee2babf",
|
| 72 |
+
"metadata": {},
|
| 73 |
+
"outputs": [
|
| 74 |
+
{
|
| 75 |
+
"name": "stderr",
|
| 76 |
+
"output_type": "stream",
|
| 77 |
+
"text": [
|
| 78 |
+
"Found cached dataset financial_phrasebank (/home/sourab/.cache/huggingface/datasets/financial_phrasebank/sentences_allagree/1.0.0/550bde12e6c30e2674da973a55f57edde5181d53f5a5a34c1531c53f93b7e141)\n"
|
| 79 |
+
]
|
| 80 |
+
},
|
| 81 |
+
{
|
| 82 |
+
"data": {
|
| 83 |
+
"application/vnd.jupyter.widget-view+json": {
|
| 84 |
+
"model_id": "3403bf3d718042018b0531848cc30209",
|
| 85 |
+
"version_major": 2,
|
| 86 |
+
"version_minor": 0
|
| 87 |
+
},
|
| 88 |
+
"text/plain": [
|
| 89 |
+
" 0%| | 0/1 [00:00<?, ?it/s]"
|
| 90 |
+
]
|
| 91 |
+
},
|
| 92 |
+
"metadata": {},
|
| 93 |
+
"output_type": "display_data"
|
| 94 |
+
},
|
| 95 |
+
{
|
| 96 |
+
"data": {
|
| 97 |
+
"application/vnd.jupyter.widget-view+json": {
|
| 98 |
+
"model_id": "d3d5c45e3776469f9560b6eaa9346f8f",
|
| 99 |
+
"version_major": 2,
|
| 100 |
+
"version_minor": 0
|
| 101 |
+
},
|
| 102 |
+
"text/plain": [
|
| 103 |
+
" 0%| | 0/3 [00:00<?, ?ba/s]"
|
| 104 |
+
]
|
| 105 |
+
},
|
| 106 |
+
"metadata": {},
|
| 107 |
+
"output_type": "display_data"
|
| 108 |
+
},
|
| 109 |
+
{
|
| 110 |
+
"data": {
|
| 111 |
+
"application/vnd.jupyter.widget-view+json": {
|
| 112 |
+
"model_id": "e9736f26e9aa450b8d65f95c0b9c81cc",
|
| 113 |
+
"version_major": 2,
|
| 114 |
+
"version_minor": 0
|
| 115 |
+
},
|
| 116 |
+
"text/plain": [
|
| 117 |
+
" 0%| | 0/1 [00:00<?, ?ba/s]"
|
| 118 |
+
]
|
| 119 |
+
},
|
| 120 |
+
"metadata": {},
|
| 121 |
+
"output_type": "display_data"
|
| 122 |
+
},
|
| 123 |
+
{
|
| 124 |
+
"data": {
|
| 125 |
+
"text/plain": [
|
| 126 |
+
"{'sentence': \"The 10,000-odd square metre plot that Stockmann has bought for the Nevsky Center shopping center is located on Nevsky Prospect , St Petersburg 's high street , next to the Vosstaniya Square underground station , in the immediate vicinity of Moscow Station .\",\n",
|
| 127 |
+
" 'label': 1,\n",
|
| 128 |
+
" 'text_label': 'neutral'}"
|
| 129 |
+
]
|
| 130 |
+
},
|
| 131 |
+
"execution_count": 3,
|
| 132 |
+
"metadata": {},
|
| 133 |
+
"output_type": "execute_result"
|
| 134 |
+
}
|
| 135 |
+
],
|
| 136 |
+
"source": [
|
| 137 |
+
"# loading dataset\n",
|
| 138 |
+
"dataset = load_dataset(\"financial_phrasebank\", \"sentences_allagree\")\n",
|
| 139 |
+
"dataset = dataset[\"train\"].train_test_split(test_size=0.1)\n",
|
| 140 |
+
"dataset[\"validation\"] = dataset[\"test\"]\n",
|
| 141 |
+
"del dataset[\"test\"]\n",
|
| 142 |
+
"\n",
|
| 143 |
+
"classes = dataset[\"train\"].features[\"label\"].names\n",
|
| 144 |
+
"dataset = dataset.map(\n",
|
| 145 |
+
" lambda x: {\"text_label\": [classes[label] for label in x[\"label\"]]},\n",
|
| 146 |
+
" batched=True,\n",
|
| 147 |
+
" num_proc=1,\n",
|
| 148 |
+
")\n",
|
| 149 |
+
"\n",
|
| 150 |
+
"dataset[\"train\"][0]"
|
| 151 |
+
]
|
| 152 |
+
},
|
| 153 |
+
{
|
| 154 |
+
"cell_type": "code",
|
| 155 |
+
"execution_count": 4,
|
| 156 |
+
"id": "adf9608c",
|
| 157 |
+
"metadata": {},
|
| 158 |
+
"outputs": [
|
| 159 |
+
{
|
| 160 |
+
"data": {
|
| 161 |
+
"application/vnd.jupyter.widget-view+json": {
|
| 162 |
+
"model_id": "c460989d4ab24e3f97d81ef040b1d1b4",
|
| 163 |
+
"version_major": 2,
|
| 164 |
+
"version_minor": 0
|
| 165 |
+
},
|
| 166 |
+
"text/plain": [
|
| 167 |
+
"Running tokenizer on dataset: 0%| | 0/3 [00:00<?, ?ba/s]"
|
| 168 |
+
]
|
| 169 |
+
},
|
| 170 |
+
"metadata": {},
|
| 171 |
+
"output_type": "display_data"
|
| 172 |
+
},
|
| 173 |
+
{
|
| 174 |
+
"data": {
|
| 175 |
+
"application/vnd.jupyter.widget-view+json": {
|
| 176 |
+
"model_id": "1acc389b08b94f8a87900b9fbdbccce4",
|
| 177 |
+
"version_major": 2,
|
| 178 |
+
"version_minor": 0
|
| 179 |
+
},
|
| 180 |
+
"text/plain": [
|
| 181 |
+
"Running tokenizer on dataset: 0%| | 0/1 [00:00<?, ?ba/s]"
|
| 182 |
+
]
|
| 183 |
+
},
|
| 184 |
+
"metadata": {},
|
| 185 |
+
"output_type": "display_data"
|
| 186 |
+
}
|
| 187 |
+
],
|
| 188 |
+
"source": [
|
| 189 |
+
"# data preprocessing\n",
|
| 190 |
+
"tokenizer = AutoTokenizer.from_pretrained(model_name_or_path)\n",
|
| 191 |
+
"\n",
|
| 192 |
+
"\n",
|
| 193 |
+
"def preprocess_function(examples):\n",
|
| 194 |
+
" inputs = examples[text_column]\n",
|
| 195 |
+
" targets = examples[label_column]\n",
|
| 196 |
+
" model_inputs = tokenizer(inputs, max_length=max_length, padding=\"max_length\", truncation=True, return_tensors=\"pt\")\n",
|
| 197 |
+
" labels = tokenizer(targets, max_length=3, padding=\"max_length\", truncation=True, return_tensors=\"pt\")\n",
|
| 198 |
+
" labels = labels[\"input_ids\"]\n",
|
| 199 |
+
" labels[labels == tokenizer.pad_token_id] = -100\n",
|
| 200 |
+
" model_inputs[\"labels\"] = labels\n",
|
| 201 |
+
" return model_inputs\n",
|
| 202 |
+
"\n",
|
| 203 |
+
"\n",
|
| 204 |
+
"processed_datasets = dataset.map(\n",
|
| 205 |
+
" preprocess_function,\n",
|
| 206 |
+
" batched=True,\n",
|
| 207 |
+
" num_proc=1,\n",
|
| 208 |
+
" remove_columns=dataset[\"train\"].column_names,\n",
|
| 209 |
+
" load_from_cache_file=False,\n",
|
| 210 |
+
" desc=\"Running tokenizer on dataset\",\n",
|
| 211 |
+
")\n",
|
| 212 |
+
"\n",
|
| 213 |
+
"train_dataset = processed_datasets[\"train\"]\n",
|
| 214 |
+
"eval_dataset = processed_datasets[\"validation\"]\n",
|
| 215 |
+
"\n",
|
| 216 |
+
"train_dataloader = DataLoader(\n",
|
| 217 |
+
" train_dataset, shuffle=True, collate_fn=default_data_collator, batch_size=batch_size, pin_memory=True\n",
|
| 218 |
+
")\n",
|
| 219 |
+
"eval_dataloader = DataLoader(eval_dataset, collate_fn=default_data_collator, batch_size=batch_size, pin_memory=True)"
|
| 220 |
+
]
|
| 221 |
+
},
|
| 222 |
+
{
|
| 223 |
+
"cell_type": "code",
|
| 224 |
+
"execution_count": 5,
|
| 225 |
+
"id": "f733a3c6",
|
| 226 |
+
"metadata": {},
|
| 227 |
+
"outputs": [],
|
| 228 |
+
"source": [
|
| 229 |
+
"# optimizer and lr scheduler\n",
|
| 230 |
+
"optimizer = torch.optim.AdamW(model.parameters(), lr=lr)\n",
|
| 231 |
+
"lr_scheduler = get_linear_schedule_with_warmup(\n",
|
| 232 |
+
" optimizer=optimizer,\n",
|
| 233 |
+
" num_warmup_steps=0,\n",
|
| 234 |
+
" num_training_steps=(len(train_dataloader) * num_epochs),\n",
|
| 235 |
+
")"
|
| 236 |
+
]
|
| 237 |
+
},
|
| 238 |
+
{
|
| 239 |
+
"cell_type": "code",
|
| 240 |
+
"execution_count": 6,
|
| 241 |
+
"id": "6b3a4090",
|
| 242 |
+
"metadata": {},
|
| 243 |
+
"outputs": [
|
| 244 |
+
{
|
| 245 |
+
"name": "stderr",
|
| 246 |
+
"output_type": "stream",
|
| 247 |
+
"text": [
|
| 248 |
+
"100%|████████████████████████████████████████████████████████████████████████████████████████| 255/255 [02:21<00:00, 1.81it/s]\n",
|
| 249 |
+
"100%|██████████████████████████████████████████████████████████████████████████████████████████| 29/29 [00:07<00:00, 4.13it/s]\n"
|
| 250 |
+
]
|
| 251 |
+
},
|
| 252 |
+
{
|
| 253 |
+
"name": "stdout",
|
| 254 |
+
"output_type": "stream",
|
| 255 |
+
"text": [
|
| 256 |
+
"epoch=0: train_ppl=tensor(14.6341, device='cuda:0') train_epoch_loss=tensor(2.6834, device='cuda:0') eval_ppl=tensor(1.0057, device='cuda:0') eval_epoch_loss=tensor(0.0057, device='cuda:0')\n"
|
| 257 |
+
]
|
| 258 |
+
},
|
| 259 |
+
{
|
| 260 |
+
"name": "stderr",
|
| 261 |
+
"output_type": "stream",
|
| 262 |
+
"text": [
|
| 263 |
+
"100%|████████████████████████████████████████████████████████████████████████████████████████| 255/255 [02:00<00:00, 2.11it/s]\n",
|
| 264 |
+
"100%|██████████████████████████████████████████████████████████████████████████████████████████| 29/29 [00:05<00:00, 5.66it/s]\n"
|
| 265 |
+
]
|
| 266 |
+
},
|
| 267 |
+
{
|
| 268 |
+
"name": "stdout",
|
| 269 |
+
"output_type": "stream",
|
| 270 |
+
"text": [
|
| 271 |
+
"epoch=1: train_ppl=tensor(1.7576, device='cuda:0') train_epoch_loss=tensor(0.5640, device='cuda:0') eval_ppl=tensor(1.0052, device='cuda:0') eval_epoch_loss=tensor(0.0052, device='cuda:0')\n"
|
| 272 |
+
]
|
| 273 |
+
},
|
| 274 |
+
{
|
| 275 |
+
"name": "stderr",
|
| 276 |
+
"output_type": "stream",
|
| 277 |
+
"text": [
|
| 278 |
+
"100%|████████████████████████████████████████████████████████████████████████████████████████| 255/255 [01:33<00:00, 2.74it/s]\n",
|
| 279 |
+
"100%|██████████████████████████████████████████████████████████████████████████████████████████| 29/29 [00:04<00:00, 6.23it/s]"
|
| 280 |
+
]
|
| 281 |
+
},
|
| 282 |
+
{
|
| 283 |
+
"name": "stdout",
|
| 284 |
+
"output_type": "stream",
|
| 285 |
+
"text": [
|
| 286 |
+
"epoch=2: train_ppl=tensor(1.3830, device='cuda:0') train_epoch_loss=tensor(0.3243, device='cuda:0') eval_ppl=tensor(1.0035, device='cuda:0') eval_epoch_loss=tensor(0.0035, device='cuda:0')\n"
|
| 287 |
+
]
|
| 288 |
+
},
|
| 289 |
+
{
|
| 290 |
+
"name": "stderr",
|
| 291 |
+
"output_type": "stream",
|
| 292 |
+
"text": [
|
| 293 |
+
"\n"
|
| 294 |
+
]
|
| 295 |
+
}
|
| 296 |
+
],
|
| 297 |
+
"source": [
|
| 298 |
+
"# training and evaluation\n",
|
| 299 |
+
"model = model.to(device)\n",
|
| 300 |
+
"\n",
|
| 301 |
+
"for epoch in range(num_epochs):\n",
|
| 302 |
+
" model.train()\n",
|
| 303 |
+
" total_loss = 0\n",
|
| 304 |
+
" for step, batch in enumerate(tqdm(train_dataloader)):\n",
|
| 305 |
+
" batch = {k: v.to(device) for k, v in batch.items()}\n",
|
| 306 |
+
" outputs = model(**batch)\n",
|
| 307 |
+
" loss = outputs.loss\n",
|
| 308 |
+
" total_loss += loss.detach().float()\n",
|
| 309 |
+
" loss.backward()\n",
|
| 310 |
+
" optimizer.step()\n",
|
| 311 |
+
" lr_scheduler.step()\n",
|
| 312 |
+
" optimizer.zero_grad()\n",
|
| 313 |
+
"\n",
|
| 314 |
+
" model.eval()\n",
|
| 315 |
+
" eval_loss = 0\n",
|
| 316 |
+
" eval_preds = []\n",
|
| 317 |
+
" for step, batch in enumerate(tqdm(eval_dataloader)):\n",
|
| 318 |
+
" batch = {k: v.to(device) for k, v in batch.items()}\n",
|
| 319 |
+
" with torch.no_grad():\n",
|
| 320 |
+
" outputs = model(**batch)\n",
|
| 321 |
+
" loss = outputs.loss\n",
|
| 322 |
+
" eval_loss += loss.detach().float()\n",
|
| 323 |
+
" eval_preds.extend(\n",
|
| 324 |
+
" tokenizer.batch_decode(torch.argmax(outputs.logits, -1).detach().cpu().numpy(), skip_special_tokens=True)\n",
|
| 325 |
+
" )\n",
|
| 326 |
+
"\n",
|
| 327 |
+
" eval_epoch_loss = eval_loss / len(eval_dataloader)\n",
|
| 328 |
+
" eval_ppl = torch.exp(eval_epoch_loss)\n",
|
| 329 |
+
" train_epoch_loss = total_loss / len(train_dataloader)\n",
|
| 330 |
+
" train_ppl = torch.exp(train_epoch_loss)\n",
|
| 331 |
+
" print(f\"{epoch=}: {train_ppl=} {train_epoch_loss=} {eval_ppl=} {eval_epoch_loss=}\")"
|
| 332 |
+
]
|
| 333 |
+
},
|
| 334 |
+
{
|
| 335 |
+
"cell_type": "code",
|
| 336 |
+
"execution_count": 7,
|
| 337 |
+
"id": "6cafa67b",
|
| 338 |
+
"metadata": {},
|
| 339 |
+
"outputs": [
|
| 340 |
+
{
|
| 341 |
+
"name": "stdout",
|
| 342 |
+
"output_type": "stream",
|
| 343 |
+
"text": [
|
| 344 |
+
"accuracy=97.3568281938326 % on the evaluation dataset\n",
|
| 345 |
+
"eval_preds[:10]=['neutral', 'neutral', 'neutral', 'positive', 'neutral', 'positive', 'positive', 'neutral', 'neutral', 'neutral']\n",
|
| 346 |
+
"dataset['validation']['text_label'][:10]=['neutral', 'neutral', 'neutral', 'positive', 'neutral', 'positive', 'positive', 'neutral', 'neutral', 'neutral']\n"
|
| 347 |
+
]
|
| 348 |
+
}
|
| 349 |
+
],
|
| 350 |
+
"source": [
|
| 351 |
+
"# print accuracy\n",
|
| 352 |
+
"correct = 0\n",
|
| 353 |
+
"total = 0\n",
|
| 354 |
+
"for pred, true in zip(eval_preds, dataset[\"validation\"][\"text_label\"]):\n",
|
| 355 |
+
" if pred.strip() == true.strip():\n",
|
| 356 |
+
" correct += 1\n",
|
| 357 |
+
" total += 1\n",
|
| 358 |
+
"accuracy = correct / total * 100\n",
|
| 359 |
+
"print(f\"{accuracy=} % on the evaluation dataset\")\n",
|
| 360 |
+
"print(f\"{eval_preds[:10]=}\")\n",
|
| 361 |
+
"print(f\"{dataset['validation']['text_label'][:10]=}\")"
|
| 362 |
+
]
|
| 363 |
+
},
|
| 364 |
+
{
|
| 365 |
+
"cell_type": "code",
|
| 366 |
+
"execution_count": 8,
|
| 367 |
+
"id": "a8de6005",
|
| 368 |
+
"metadata": {},
|
| 369 |
+
"outputs": [],
|
| 370 |
+
"source": [
|
| 371 |
+
"# saving model\n",
|
| 372 |
+
"peft_model_id = f\"{model_name_or_path}_{peft_config.peft_type}_{peft_config.task_type}\"\n",
|
| 373 |
+
"model.save_pretrained(peft_model_id)"
|
| 374 |
+
]
|
| 375 |
+
},
|
| 376 |
+
{
|
| 377 |
+
"cell_type": "code",
|
| 378 |
+
"execution_count": 9,
|
| 379 |
+
"id": "bd20cd4c",
|
| 380 |
+
"metadata": {},
|
| 381 |
+
"outputs": [
|
| 382 |
+
{
|
| 383 |
+
"name": "stdout",
|
| 384 |
+
"output_type": "stream",
|
| 385 |
+
"text": [
|
| 386 |
+
"9,2M\tbigscience/mt0-large_LORA_SEQ_2_SEQ_LM/adapter_model.bin\r\n"
|
| 387 |
+
]
|
| 388 |
+
}
|
| 389 |
+
],
|
| 390 |
+
"source": [
|
| 391 |
+
"ckpt = f\"{peft_model_id}/adapter_model.bin\"\n",
|
| 392 |
+
"!du -h $ckpt"
|
| 393 |
+
]
|
| 394 |
+
},
|
| 395 |
+
{
|
| 396 |
+
"cell_type": "code",
|
| 397 |
+
"execution_count": 11,
|
| 398 |
+
"id": "76c2fc29",
|
| 399 |
+
"metadata": {},
|
| 400 |
+
"outputs": [],
|
| 401 |
+
"source": [
|
| 402 |
+
"from peft import PeftModel, PeftConfig\n",
|
| 403 |
+
"\n",
|
| 404 |
+
"peft_model_id = f\"{model_name_or_path}_{peft_config.peft_type}_{peft_config.task_type}\"\n",
|
| 405 |
+
"\n",
|
| 406 |
+
"config = PeftConfig.from_pretrained(peft_model_id)\n",
|
| 407 |
+
"model = AutoModelForSeq2SeqLM.from_pretrained(config.base_model_name_or_path)\n",
|
| 408 |
+
"model = PeftModel.from_pretrained(model, peft_model_id)"
|
| 409 |
+
]
|
| 410 |
+
},
|
| 411 |
+
{
|
| 412 |
+
"cell_type": "code",
|
| 413 |
+
"execution_count": 15,
|
| 414 |
+
"id": "37d712ce",
|
| 415 |
+
"metadata": {},
|
| 416 |
+
"outputs": [
|
| 417 |
+
{
|
| 418 |
+
"name": "stdout",
|
| 419 |
+
"output_type": "stream",
|
| 420 |
+
"text": [
|
| 421 |
+
"- Demand for fireplace products was lower than expected , especially in Germany .\n",
|
| 422 |
+
"{'input_ids': tensor([[ 259, 264, 259, 82903, 332, 1090, 10040, 10371, 639, 259,\n",
|
| 423 |
+
" 19540, 2421, 259, 25505, 259, 261, 259, 21230, 281, 17052,\n",
|
| 424 |
+
" 259, 260, 1]]), 'attention_mask': tensor([[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]])}\n",
|
| 425 |
+
"tensor([[ 0, 259, 32588, 1]])\n",
|
| 426 |
+
"['negative']\n"
|
| 427 |
+
]
|
| 428 |
+
}
|
| 429 |
+
],
|
| 430 |
+
"source": [
|
| 431 |
+
"model.eval()\n",
|
| 432 |
+
"i = 13\n",
|
| 433 |
+
"inputs = tokenizer(dataset[\"validation\"][text_column][i], return_tensors=\"pt\")\n",
|
| 434 |
+
"print(dataset[\"validation\"][text_column][i])\n",
|
| 435 |
+
"print(inputs)\n",
|
| 436 |
+
"\n",
|
| 437 |
+
"with torch.no_grad():\n",
|
| 438 |
+
" outputs = model.generate(input_ids=inputs[\"input_ids\"], max_new_tokens=10)\n",
|
| 439 |
+
" print(outputs)\n",
|
| 440 |
+
" print(tokenizer.batch_decode(outputs.detach().cpu().numpy(), skip_special_tokens=True))"
|
| 441 |
+
]
|
| 442 |
+
},
|
| 443 |
+
{
|
| 444 |
+
"cell_type": "code",
|
| 445 |
+
"execution_count": null,
|
| 446 |
+
"id": "66c65ea4",
|
| 447 |
+
"metadata": {},
|
| 448 |
+
"outputs": [],
|
| 449 |
+
"source": []
|
| 450 |
+
},
|
| 451 |
+
{
|
| 452 |
+
"cell_type": "code",
|
| 453 |
+
"execution_count": null,
|
| 454 |
+
"id": "65e71f78",
|
| 455 |
+
"metadata": {},
|
| 456 |
+
"outputs": [],
|
| 457 |
+
"source": []
|
| 458 |
+
}
|
| 459 |
+
],
|
| 460 |
+
"metadata": {
|
| 461 |
+
"kernelspec": {
|
| 462 |
+
"display_name": "Python 3 (ipykernel)",
|
| 463 |
+
"language": "python",
|
| 464 |
+
"name": "python3"
|
| 465 |
+
},
|
| 466 |
+
"language_info": {
|
| 467 |
+
"codemirror_mode": {
|
| 468 |
+
"name": "ipython",
|
| 469 |
+
"version": 3
|
| 470 |
+
},
|
| 471 |
+
"file_extension": ".py",
|
| 472 |
+
"mimetype": "text/x-python",
|
| 473 |
+
"name": "python",
|
| 474 |
+
"nbconvert_exporter": "python",
|
| 475 |
+
"pygments_lexer": "ipython3",
|
| 476 |
+
"version": "3.10.5"
|
| 477 |
+
},
|
| 478 |
+
"vscode": {
|
| 479 |
+
"interpreter": {
|
| 480 |
+
"hash": "aee8b7b246df8f9039afb4144a1f6fd8d2ca17a180786b69acc140d282b71a49"
|
| 481 |
+
}
|
| 482 |
+
}
|
| 483 |
+
},
|
| 484 |
+
"nbformat": 4,
|
| 485 |
+
"nbformat_minor": 5
|
| 486 |
+
}
|
peft_lora_seq2seq_accelerate_big_model_inference.ipynb
ADDED
|
@@ -0,0 +1,253 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"cells": [
|
| 3 |
+
{
|
| 4 |
+
"cell_type": "code",
|
| 5 |
+
"execution_count": null,
|
| 6 |
+
"id": "71fbfca2",
|
| 7 |
+
"metadata": {},
|
| 8 |
+
"outputs": [],
|
| 9 |
+
"source": [
|
| 10 |
+
"from transformers import AutoModelForSeq2SeqLM\n",
|
| 11 |
+
"from peft import PeftModel, PeftConfig\n",
|
| 12 |
+
"import torch\n",
|
| 13 |
+
"from datasets import load_dataset\n",
|
| 14 |
+
"import os\n",
|
| 15 |
+
"from transformers import AutoTokenizer\n",
|
| 16 |
+
"from torch.utils.data import DataLoader\n",
|
| 17 |
+
"from transformers import default_data_collator, get_linear_schedule_with_warmup\n",
|
| 18 |
+
"from tqdm import tqdm\n",
|
| 19 |
+
"from datasets import load_dataset\n",
|
| 20 |
+
"\n",
|
| 21 |
+
"dataset_name = \"twitter_complaints\"\n",
|
| 22 |
+
"text_column = \"Tweet text\"\n",
|
| 23 |
+
"label_column = \"text_label\"\n",
|
| 24 |
+
"batch_size = 8\n",
|
| 25 |
+
"\n",
|
| 26 |
+
"peft_model_id = \"smangrul/twitter_complaints_bigscience_T0_3B_LORA_SEQ_2_SEQ_LM\"\n",
|
| 27 |
+
"config = PeftConfig.from_pretrained(peft_model_id)"
|
| 28 |
+
]
|
| 29 |
+
},
|
| 30 |
+
{
|
| 31 |
+
"cell_type": "code",
|
| 32 |
+
"execution_count": 2,
|
| 33 |
+
"id": "cc55820a",
|
| 34 |
+
"metadata": {},
|
| 35 |
+
"outputs": [],
|
| 36 |
+
"source": [
|
| 37 |
+
"peft_model_id = \"smangrul/twitter_complaints_bigscience_T0_3B_LORA_SEQ_2_SEQ_LM\"\n",
|
| 38 |
+
"max_memory = {0: \"6GIB\", 1: \"0GIB\", 2: \"0GIB\", 3: \"0GIB\", 4: \"0GIB\", \"cpu\": \"30GB\"}\n",
|
| 39 |
+
"config = PeftConfig.from_pretrained(peft_model_id)\n",
|
| 40 |
+
"model = AutoModelForSeq2SeqLM.from_pretrained(config.base_model_name_or_path, device_map=\"auto\", max_memory=max_memory)\n",
|
| 41 |
+
"model = PeftModel.from_pretrained(model, peft_model_id, device_map=\"auto\", max_memory=max_memory)"
|
| 42 |
+
]
|
| 43 |
+
},
|
| 44 |
+
{
|
| 45 |
+
"cell_type": "code",
|
| 46 |
+
"execution_count": null,
|
| 47 |
+
"id": "e1a3648b",
|
| 48 |
+
"metadata": {},
|
| 49 |
+
"outputs": [],
|
| 50 |
+
"source": [
|
| 51 |
+
"from datasets import load_dataset\n",
|
| 52 |
+
"\n",
|
| 53 |
+
"dataset = load_dataset(\"ought/raft\", dataset_name)\n",
|
| 54 |
+
"\n",
|
| 55 |
+
"classes = [k.replace(\"_\", \" \") for k in dataset[\"train\"].features[\"Label\"].names]\n",
|
| 56 |
+
"print(classes)\n",
|
| 57 |
+
"dataset = dataset.map(\n",
|
| 58 |
+
" lambda x: {\"text_label\": [classes[label] for label in x[\"Label\"]]},\n",
|
| 59 |
+
" batched=True,\n",
|
| 60 |
+
" num_proc=1,\n",
|
| 61 |
+
")\n",
|
| 62 |
+
"print(dataset)\n",
|
| 63 |
+
"dataset[\"train\"][0]"
|
| 64 |
+
]
|
| 65 |
+
},
|
| 66 |
+
{
|
| 67 |
+
"cell_type": "code",
|
| 68 |
+
"execution_count": null,
|
| 69 |
+
"id": "fe12d4d3",
|
| 70 |
+
"metadata": {},
|
| 71 |
+
"outputs": [],
|
| 72 |
+
"source": [
|
| 73 |
+
"tokenizer = AutoTokenizer.from_pretrained(config.base_model_name_or_path)\n",
|
| 74 |
+
"target_max_length = max([len(tokenizer(class_label)[\"input_ids\"]) for class_label in classes])\n",
|
| 75 |
+
"\n",
|
| 76 |
+
"\n",
|
| 77 |
+
"def preprocess_function(examples):\n",
|
| 78 |
+
" inputs = examples[text_column]\n",
|
| 79 |
+
" targets = examples[label_column]\n",
|
| 80 |
+
" model_inputs = tokenizer(inputs, truncation=True)\n",
|
| 81 |
+
" labels = tokenizer(\n",
|
| 82 |
+
" targets, max_length=target_max_length, padding=\"max_length\", truncation=True, return_tensors=\"pt\"\n",
|
| 83 |
+
" )\n",
|
| 84 |
+
" labels = labels[\"input_ids\"]\n",
|
| 85 |
+
" labels[labels == tokenizer.pad_token_id] = -100\n",
|
| 86 |
+
" model_inputs[\"labels\"] = labels\n",
|
| 87 |
+
" return model_inputs\n",
|
| 88 |
+
"\n",
|
| 89 |
+
"\n",
|
| 90 |
+
"processed_datasets = dataset.map(\n",
|
| 91 |
+
" preprocess_function,\n",
|
| 92 |
+
" batched=True,\n",
|
| 93 |
+
" num_proc=1,\n",
|
| 94 |
+
" remove_columns=dataset[\"train\"].column_names,\n",
|
| 95 |
+
" load_from_cache_file=True,\n",
|
| 96 |
+
" desc=\"Running tokenizer on dataset\",\n",
|
| 97 |
+
")\n",
|
| 98 |
+
"\n",
|
| 99 |
+
"train_dataset = processed_datasets[\"train\"]\n",
|
| 100 |
+
"eval_dataset = processed_datasets[\"train\"]\n",
|
| 101 |
+
"test_dataset = processed_datasets[\"test\"]\n",
|
| 102 |
+
"\n",
|
| 103 |
+
"\n",
|
| 104 |
+
"def collate_fn(examples):\n",
|
| 105 |
+
" return tokenizer.pad(examples, padding=\"longest\", return_tensors=\"pt\")\n",
|
| 106 |
+
"\n",
|
| 107 |
+
"\n",
|
| 108 |
+
"train_dataloader = DataLoader(\n",
|
| 109 |
+
" train_dataset, shuffle=True, collate_fn=collate_fn, batch_size=batch_size, pin_memory=True\n",
|
| 110 |
+
")\n",
|
| 111 |
+
"eval_dataloader = DataLoader(eval_dataset, collate_fn=collate_fn, batch_size=batch_size, pin_memory=True)\n",
|
| 112 |
+
"test_dataloader = DataLoader(test_dataset, collate_fn=collate_fn, batch_size=batch_size, pin_memory=True)"
|
| 113 |
+
]
|
| 114 |
+
},
|
| 115 |
+
{
|
| 116 |
+
"cell_type": "code",
|
| 117 |
+
"execution_count": 5,
|
| 118 |
+
"id": "b33be5e6",
|
| 119 |
+
"metadata": {},
|
| 120 |
+
"outputs": [
|
| 121 |
+
{
|
| 122 |
+
"name": "stdout",
|
| 123 |
+
"output_type": "stream",
|
| 124 |
+
"text": [
|
| 125 |
+
"@NYTsupport i have complained a dozen times & yet my papers are still thrown FAR from my door. Why is this so hard to resolve?\n",
|
| 126 |
+
"{'input_ids': tensor([[25335, 1499, 3, 10, 3320, 12056, 382, 20390, 3, 23,\n",
|
| 127 |
+
" 43, 25932, 3, 9, 9611, 648, 3, 184, 4624, 117,\n",
|
| 128 |
+
" 780, 82, 5778, 33, 341, 3, 12618, 377, 4280, 45,\n",
|
| 129 |
+
" 82, 1365, 5, 1615, 19, 48, 78, 614, 12, 7785,\n",
|
| 130 |
+
" 58, 16229, 3, 10, 3, 1]]), 'attention_mask': tensor([[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,\n",
|
| 131 |
+
" 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]])}\n",
|
| 132 |
+
"tensor([[ 0, 10394, 1]], device='cuda:0')\n",
|
| 133 |
+
"['complaint']\n"
|
| 134 |
+
]
|
| 135 |
+
}
|
| 136 |
+
],
|
| 137 |
+
"source": [
|
| 138 |
+
"model.eval()\n",
|
| 139 |
+
"i = 15\n",
|
| 140 |
+
"inputs = tokenizer(f'{text_column} : {dataset[\"test\"][i][\"Tweet text\"]} Label : ', return_tensors=\"pt\")\n",
|
| 141 |
+
"print(dataset[\"test\"][i][\"Tweet text\"])\n",
|
| 142 |
+
"print(inputs)\n",
|
| 143 |
+
"\n",
|
| 144 |
+
"with torch.no_grad():\n",
|
| 145 |
+
" outputs = model.generate(input_ids=inputs[\"input_ids\"].to(\"cuda\"), max_new_tokens=10)\n",
|
| 146 |
+
" print(outputs)\n",
|
| 147 |
+
" print(tokenizer.batch_decode(outputs.detach().cpu().numpy(), skip_special_tokens=True))"
|
| 148 |
+
]
|
| 149 |
+
},
|
| 150 |
+
{
|
| 151 |
+
"cell_type": "code",
|
| 152 |
+
"execution_count": 6,
|
| 153 |
+
"id": "b6d6cd5b",
|
| 154 |
+
"metadata": {},
|
| 155 |
+
"outputs": [
|
| 156 |
+
{
|
| 157 |
+
"name": "stderr",
|
| 158 |
+
"output_type": "stream",
|
| 159 |
+
"text": [
|
| 160 |
+
" 0%| | 0/7 [00:00<?, ?it/s]You're using a T5TokenizerFast tokenizer. Please note that with a fast tokenizer, using the `__call__` method is faster than using a method to encode the text followed by a call to the `pad` method to get a padded encoding.\n",
|
| 161 |
+
"100%|████████████████████████████████████████████████████████████████████████████████████████████| 7/7 [00:10<00:00, 1.48s/it]\n"
|
| 162 |
+
]
|
| 163 |
+
}
|
| 164 |
+
],
|
| 165 |
+
"source": [
|
| 166 |
+
"model.eval()\n",
|
| 167 |
+
"eval_preds = []\n",
|
| 168 |
+
"for _, batch in enumerate(tqdm(eval_dataloader)):\n",
|
| 169 |
+
" batch = {k: v.to(\"cuda\") for k, v in batch.items() if k != \"labels\"}\n",
|
| 170 |
+
" with torch.no_grad():\n",
|
| 171 |
+
" outputs = model.generate(**batch, max_new_tokens=10)\n",
|
| 172 |
+
" preds = outputs.detach().cpu().numpy()\n",
|
| 173 |
+
" eval_preds.extend(tokenizer.batch_decode(preds, skip_special_tokens=True))"
|
| 174 |
+
]
|
| 175 |
+
},
|
| 176 |
+
{
|
| 177 |
+
"cell_type": "code",
|
| 178 |
+
"execution_count": 7,
|
| 179 |
+
"id": "61264abe",
|
| 180 |
+
"metadata": {},
|
| 181 |
+
"outputs": [
|
| 182 |
+
{
|
| 183 |
+
"name": "stdout",
|
| 184 |
+
"output_type": "stream",
|
| 185 |
+
"text": [
|
| 186 |
+
"accuracy=100.0\n",
|
| 187 |
+
"eval_preds[:10]=['no complaint', 'no complaint', 'complaint', 'complaint', 'no complaint', 'no complaint', 'no complaint', 'complaint', 'complaint', 'no complaint']\n",
|
| 188 |
+
"dataset['train'][label_column][:10]=['no complaint', 'no complaint', 'complaint', 'complaint', 'no complaint', 'no complaint', 'no complaint', 'complaint', 'complaint', 'no complaint']\n"
|
| 189 |
+
]
|
| 190 |
+
}
|
| 191 |
+
],
|
| 192 |
+
"source": [
|
| 193 |
+
"correct = 0\n",
|
| 194 |
+
"total = 0\n",
|
| 195 |
+
"for pred, true in zip(eval_preds, dataset[\"train\"][label_column]):\n",
|
| 196 |
+
" if pred.strip() == true.strip():\n",
|
| 197 |
+
" correct += 1\n",
|
| 198 |
+
" total += 1\n",
|
| 199 |
+
"accuracy = correct / total * 100\n",
|
| 200 |
+
"print(f\"{accuracy=}\")\n",
|
| 201 |
+
"print(f\"{eval_preds[:10]=}\")\n",
|
| 202 |
+
"print(f\"{dataset['train'][label_column][:10]=}\")"
|
| 203 |
+
]
|
| 204 |
+
},
|
| 205 |
+
{
|
| 206 |
+
"cell_type": "code",
|
| 207 |
+
"execution_count": null,
|
| 208 |
+
"id": "a70802a3",
|
| 209 |
+
"metadata": {},
|
| 210 |
+
"outputs": [],
|
| 211 |
+
"source": [
|
| 212 |
+
"model.eval()\n",
|
| 213 |
+
"test_preds = []\n",
|
| 214 |
+
"\n",
|
| 215 |
+
"for _, batch in enumerate(tqdm(test_dataloader)):\n",
|
| 216 |
+
" batch = {k: v for k, v in batch.items() if k != \"labels\"}\n",
|
| 217 |
+
" with torch.no_grad():\n",
|
| 218 |
+
" outputs = model.generate(**batch, max_new_tokens=10)\n",
|
| 219 |
+
" preds = outputs.detach().cpu().numpy()\n",
|
| 220 |
+
" test_preds.extend(tokenizer.batch_decode(preds, skip_special_tokens=True))\n",
|
| 221 |
+
" if len(test_preds) > 100:\n",
|
| 222 |
+
" break\n",
|
| 223 |
+
"test_preds"
|
| 224 |
+
]
|
| 225 |
+
}
|
| 226 |
+
],
|
| 227 |
+
"metadata": {
|
| 228 |
+
"kernelspec": {
|
| 229 |
+
"display_name": "Python 3 (ipykernel)",
|
| 230 |
+
"language": "python",
|
| 231 |
+
"name": "python3"
|
| 232 |
+
},
|
| 233 |
+
"language_info": {
|
| 234 |
+
"codemirror_mode": {
|
| 235 |
+
"name": "ipython",
|
| 236 |
+
"version": 3
|
| 237 |
+
},
|
| 238 |
+
"file_extension": ".py",
|
| 239 |
+
"mimetype": "text/x-python",
|
| 240 |
+
"name": "python",
|
| 241 |
+
"nbconvert_exporter": "python",
|
| 242 |
+
"pygments_lexer": "ipython3",
|
| 243 |
+
"version": "3.10.5 (v3.10.5:f377153967, Jun 6 2022, 12:36:10) [Clang 13.0.0 (clang-1300.0.29.30)]"
|
| 244 |
+
},
|
| 245 |
+
"vscode": {
|
| 246 |
+
"interpreter": {
|
| 247 |
+
"hash": "aee8b7b246df8f9039afb4144a1f6fd8d2ca17a180786b69acc140d282b71a49"
|
| 248 |
+
}
|
| 249 |
+
}
|
| 250 |
+
},
|
| 251 |
+
"nbformat": 4,
|
| 252 |
+
"nbformat_minor": 5
|
| 253 |
+
}
|
peft_prefix_tuning_seq2seq.ipynb
ADDED
|
@@ -0,0 +1,516 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"cells": [
|
| 3 |
+
{
|
| 4 |
+
"cell_type": "code",
|
| 5 |
+
"execution_count": 1,
|
| 6 |
+
"id": "5f93b7d1",
|
| 7 |
+
"metadata": {},
|
| 8 |
+
"outputs": [
|
| 9 |
+
{
|
| 10 |
+
"name": "stdout",
|
| 11 |
+
"output_type": "stream",
|
| 12 |
+
"text": [
|
| 13 |
+
"\n",
|
| 14 |
+
"===================================BUG REPORT===================================\n",
|
| 15 |
+
"Welcome to bitsandbytes. For bug reports, please submit your error trace to: https://github.com/TimDettmers/bitsandbytes/issues\n",
|
| 16 |
+
"For effortless bug reporting copy-paste your error into this form: https://docs.google.com/forms/d/e/1FAIpQLScPB8emS3Thkp66nvqwmjTEgxp8Y9ufuWTzFyr9kJ5AoI47dQ/viewform?usp=sf_link\n",
|
| 17 |
+
"================================================================================\n",
|
| 18 |
+
"CUDA SETUP: CUDA runtime path found: /home/sourab/miniconda3/envs/ml/lib/libcudart.so\n",
|
| 19 |
+
"CUDA SETUP: Highest compute capability among GPUs detected: 7.5\n",
|
| 20 |
+
"CUDA SETUP: Detected CUDA version 117\n",
|
| 21 |
+
"CUDA SETUP: Loading binary /home/sourab/miniconda3/envs/ml/lib/python3.10/site-packages/bitsandbytes/libbitsandbytes_cuda117.so...\n"
|
| 22 |
+
]
|
| 23 |
+
}
|
| 24 |
+
],
|
| 25 |
+
"source": [
|
| 26 |
+
"from transformers import AutoModelForSeq2SeqLM\n",
|
| 27 |
+
"from peft import get_peft_config, get_peft_model, get_peft_model_state_dict, PrefixTuningConfig, TaskType\n",
|
| 28 |
+
"import torch\n",
|
| 29 |
+
"from datasets import load_dataset\n",
|
| 30 |
+
"import os\n",
|
| 31 |
+
"\n",
|
| 32 |
+
"os.environ[\"TOKENIZERS_PARALLELISM\"] = \"false\"\n",
|
| 33 |
+
"os.environ[\"CUDA_VISIBLE_DEVICES\"] = \"3\"\n",
|
| 34 |
+
"from transformers import AutoTokenizer\n",
|
| 35 |
+
"from torch.utils.data import DataLoader\n",
|
| 36 |
+
"from transformers import default_data_collator, get_linear_schedule_with_warmup\n",
|
| 37 |
+
"from tqdm import tqdm\n",
|
| 38 |
+
"from datasets import load_dataset\n",
|
| 39 |
+
"\n",
|
| 40 |
+
"device = \"cuda\"\n",
|
| 41 |
+
"model_name_or_path = \"t5-large\"\n",
|
| 42 |
+
"tokenizer_name_or_path = \"t5-large\"\n",
|
| 43 |
+
"\n",
|
| 44 |
+
"checkpoint_name = \"financial_sentiment_analysis_prefix_tuning_v1.pt\"\n",
|
| 45 |
+
"text_column = \"sentence\"\n",
|
| 46 |
+
"label_column = \"text_label\"\n",
|
| 47 |
+
"max_length = 128\n",
|
| 48 |
+
"lr = 1e-2\n",
|
| 49 |
+
"num_epochs = 5\n",
|
| 50 |
+
"batch_size = 8"
|
| 51 |
+
]
|
| 52 |
+
},
|
| 53 |
+
{
|
| 54 |
+
"cell_type": "code",
|
| 55 |
+
"execution_count": null,
|
| 56 |
+
"id": "8d0850ac",
|
| 57 |
+
"metadata": {},
|
| 58 |
+
"outputs": [],
|
| 59 |
+
"source": [
|
| 60 |
+
"# creating model\n",
|
| 61 |
+
"peft_config = PrefixTuningConfig(task_type=TaskType.SEQ_2_SEQ_LM, inference_mode=False, num_virtual_tokens=20)\n",
|
| 62 |
+
"\n",
|
| 63 |
+
"model = AutoModelForSeq2SeqLM.from_pretrained(model_name_or_path)\n",
|
| 64 |
+
"model = get_peft_model(model, peft_config)\n",
|
| 65 |
+
"model.print_trainable_parameters()\n",
|
| 66 |
+
"model"
|
| 67 |
+
]
|
| 68 |
+
},
|
| 69 |
+
{
|
| 70 |
+
"cell_type": "code",
|
| 71 |
+
"execution_count": 3,
|
| 72 |
+
"id": "4ee2babf",
|
| 73 |
+
"metadata": {},
|
| 74 |
+
"outputs": [
|
| 75 |
+
{
|
| 76 |
+
"name": "stderr",
|
| 77 |
+
"output_type": "stream",
|
| 78 |
+
"text": [
|
| 79 |
+
"Found cached dataset financial_phrasebank (/home/sourab/.cache/huggingface/datasets/financial_phrasebank/sentences_allagree/1.0.0/550bde12e6c30e2674da973a55f57edde5181d53f5a5a34c1531c53f93b7e141)\n"
|
| 80 |
+
]
|
| 81 |
+
},
|
| 82 |
+
{
|
| 83 |
+
"data": {
|
| 84 |
+
"application/vnd.jupyter.widget-view+json": {
|
| 85 |
+
"model_id": "ec4be98991b84181bfa75f8846422b8b",
|
| 86 |
+
"version_major": 2,
|
| 87 |
+
"version_minor": 0
|
| 88 |
+
},
|
| 89 |
+
"text/plain": [
|
| 90 |
+
" 0%| | 0/1 [00:00<?, ?it/s]"
|
| 91 |
+
]
|
| 92 |
+
},
|
| 93 |
+
"metadata": {},
|
| 94 |
+
"output_type": "display_data"
|
| 95 |
+
},
|
| 96 |
+
{
|
| 97 |
+
"data": {
|
| 98 |
+
"application/vnd.jupyter.widget-view+json": {
|
| 99 |
+
"model_id": "82a6bd694c4f4751a23c370ab51f01a4",
|
| 100 |
+
"version_major": 2,
|
| 101 |
+
"version_minor": 0
|
| 102 |
+
},
|
| 103 |
+
"text/plain": [
|
| 104 |
+
" 0%| | 0/3 [00:00<?, ?ba/s]"
|
| 105 |
+
]
|
| 106 |
+
},
|
| 107 |
+
"metadata": {},
|
| 108 |
+
"output_type": "display_data"
|
| 109 |
+
},
|
| 110 |
+
{
|
| 111 |
+
"data": {
|
| 112 |
+
"application/vnd.jupyter.widget-view+json": {
|
| 113 |
+
"model_id": "3844878631534468a1495e435563e4b0",
|
| 114 |
+
"version_major": 2,
|
| 115 |
+
"version_minor": 0
|
| 116 |
+
},
|
| 117 |
+
"text/plain": [
|
| 118 |
+
" 0%| | 0/1 [00:00<?, ?ba/s]"
|
| 119 |
+
]
|
| 120 |
+
},
|
| 121 |
+
"metadata": {},
|
| 122 |
+
"output_type": "display_data"
|
| 123 |
+
},
|
| 124 |
+
{
|
| 125 |
+
"data": {
|
| 126 |
+
"text/plain": [
|
| 127 |
+
"{'sentence': 'Finnish elevators and escalators maker KONE Corporation said on Tuesday ( 18 March ) that it has received a major order from Sir Robert McAlpine to supply all elevators and escalators for the Watermark Place project in the City of London .',\n",
|
| 128 |
+
" 'label': 2,\n",
|
| 129 |
+
" 'text_label': 'positive'}"
|
| 130 |
+
]
|
| 131 |
+
},
|
| 132 |
+
"execution_count": 3,
|
| 133 |
+
"metadata": {},
|
| 134 |
+
"output_type": "execute_result"
|
| 135 |
+
}
|
| 136 |
+
],
|
| 137 |
+
"source": [
|
| 138 |
+
"# loading dataset\n",
|
| 139 |
+
"dataset = load_dataset(\"financial_phrasebank\", \"sentences_allagree\")\n",
|
| 140 |
+
"dataset = dataset[\"train\"].train_test_split(test_size=0.1)\n",
|
| 141 |
+
"dataset[\"validation\"] = dataset[\"test\"]\n",
|
| 142 |
+
"del dataset[\"test\"]\n",
|
| 143 |
+
"\n",
|
| 144 |
+
"classes = dataset[\"train\"].features[\"label\"].names\n",
|
| 145 |
+
"dataset = dataset.map(\n",
|
| 146 |
+
" lambda x: {\"text_label\": [classes[label] for label in x[\"label\"]]},\n",
|
| 147 |
+
" batched=True,\n",
|
| 148 |
+
" num_proc=1,\n",
|
| 149 |
+
")\n",
|
| 150 |
+
"\n",
|
| 151 |
+
"dataset[\"train\"][0]"
|
| 152 |
+
]
|
| 153 |
+
},
|
| 154 |
+
{
|
| 155 |
+
"cell_type": "code",
|
| 156 |
+
"execution_count": 4,
|
| 157 |
+
"id": "adf9608c",
|
| 158 |
+
"metadata": {},
|
| 159 |
+
"outputs": [
|
| 160 |
+
{
|
| 161 |
+
"name": "stderr",
|
| 162 |
+
"output_type": "stream",
|
| 163 |
+
"text": [
|
| 164 |
+
"/home/sourab/transformers/src/transformers/models/t5/tokenization_t5_fast.py:155: FutureWarning: This tokenizer was incorrectly instantiated with a model max length of 512 which will be corrected in Transformers v5.\n",
|
| 165 |
+
"For now, this behavior is kept to avoid breaking backwards compatibility when padding/encoding with `truncation is True`.\n",
|
| 166 |
+
"- Be aware that you SHOULD NOT rely on t5-large automatically truncating your input to 512 when padding/encoding.\n",
|
| 167 |
+
"- If you want to encode/pad to sequences longer than 512 you can either instantiate this tokenizer with `model_max_length` or pass `max_length` when encoding/padding.\n",
|
| 168 |
+
"- To avoid this warning, please instantiate this tokenizer with `model_max_length` set to your preferred value.\n",
|
| 169 |
+
" warnings.warn(\n"
|
| 170 |
+
]
|
| 171 |
+
},
|
| 172 |
+
{
|
| 173 |
+
"data": {
|
| 174 |
+
"application/vnd.jupyter.widget-view+json": {
|
| 175 |
+
"model_id": "4af8c12efb5643659573347509079f3a",
|
| 176 |
+
"version_major": 2,
|
| 177 |
+
"version_minor": 0
|
| 178 |
+
},
|
| 179 |
+
"text/plain": [
|
| 180 |
+
"Running tokenizer on dataset: 0%| | 0/3 [00:00<?, ?ba/s]"
|
| 181 |
+
]
|
| 182 |
+
},
|
| 183 |
+
"metadata": {},
|
| 184 |
+
"output_type": "display_data"
|
| 185 |
+
},
|
| 186 |
+
{
|
| 187 |
+
"data": {
|
| 188 |
+
"application/vnd.jupyter.widget-view+json": {
|
| 189 |
+
"model_id": "86033b6257384584afd034075af808cb",
|
| 190 |
+
"version_major": 2,
|
| 191 |
+
"version_minor": 0
|
| 192 |
+
},
|
| 193 |
+
"text/plain": [
|
| 194 |
+
"Running tokenizer on dataset: 0%| | 0/1 [00:00<?, ?ba/s]"
|
| 195 |
+
]
|
| 196 |
+
},
|
| 197 |
+
"metadata": {},
|
| 198 |
+
"output_type": "display_data"
|
| 199 |
+
}
|
| 200 |
+
],
|
| 201 |
+
"source": [
|
| 202 |
+
"# data preprocessing\n",
|
| 203 |
+
"tokenizer = AutoTokenizer.from_pretrained(model_name_or_path)\n",
|
| 204 |
+
"\n",
|
| 205 |
+
"\n",
|
| 206 |
+
"def preprocess_function(examples):\n",
|
| 207 |
+
" inputs = examples[text_column]\n",
|
| 208 |
+
" targets = examples[label_column]\n",
|
| 209 |
+
" model_inputs = tokenizer(inputs, max_length=max_length, padding=\"max_length\", truncation=True, return_tensors=\"pt\")\n",
|
| 210 |
+
" labels = tokenizer(targets, max_length=2, padding=\"max_length\", truncation=True, return_tensors=\"pt\")\n",
|
| 211 |
+
" labels = labels[\"input_ids\"]\n",
|
| 212 |
+
" labels[labels == tokenizer.pad_token_id] = -100\n",
|
| 213 |
+
" model_inputs[\"labels\"] = labels\n",
|
| 214 |
+
" return model_inputs\n",
|
| 215 |
+
"\n",
|
| 216 |
+
"\n",
|
| 217 |
+
"processed_datasets = dataset.map(\n",
|
| 218 |
+
" preprocess_function,\n",
|
| 219 |
+
" batched=True,\n",
|
| 220 |
+
" num_proc=1,\n",
|
| 221 |
+
" remove_columns=dataset[\"train\"].column_names,\n",
|
| 222 |
+
" load_from_cache_file=False,\n",
|
| 223 |
+
" desc=\"Running tokenizer on dataset\",\n",
|
| 224 |
+
")\n",
|
| 225 |
+
"\n",
|
| 226 |
+
"train_dataset = processed_datasets[\"train\"]\n",
|
| 227 |
+
"eval_dataset = processed_datasets[\"validation\"]\n",
|
| 228 |
+
"\n",
|
| 229 |
+
"train_dataloader = DataLoader(\n",
|
| 230 |
+
" train_dataset, shuffle=True, collate_fn=default_data_collator, batch_size=batch_size, pin_memory=True\n",
|
| 231 |
+
")\n",
|
| 232 |
+
"eval_dataloader = DataLoader(eval_dataset, collate_fn=default_data_collator, batch_size=batch_size, pin_memory=True)"
|
| 233 |
+
]
|
| 234 |
+
},
|
| 235 |
+
{
|
| 236 |
+
"cell_type": "code",
|
| 237 |
+
"execution_count": 5,
|
| 238 |
+
"id": "f733a3c6",
|
| 239 |
+
"metadata": {},
|
| 240 |
+
"outputs": [],
|
| 241 |
+
"source": [
|
| 242 |
+
"# optimizer and lr scheduler\n",
|
| 243 |
+
"optimizer = torch.optim.AdamW(model.parameters(), lr=lr)\n",
|
| 244 |
+
"lr_scheduler = get_linear_schedule_with_warmup(\n",
|
| 245 |
+
" optimizer=optimizer,\n",
|
| 246 |
+
" num_warmup_steps=0,\n",
|
| 247 |
+
" num_training_steps=(len(train_dataloader) * num_epochs),\n",
|
| 248 |
+
")"
|
| 249 |
+
]
|
| 250 |
+
},
|
| 251 |
+
{
|
| 252 |
+
"cell_type": "code",
|
| 253 |
+
"execution_count": 6,
|
| 254 |
+
"id": "6b3a4090",
|
| 255 |
+
"metadata": {},
|
| 256 |
+
"outputs": [
|
| 257 |
+
{
|
| 258 |
+
"name": "stderr",
|
| 259 |
+
"output_type": "stream",
|
| 260 |
+
"text": [
|
| 261 |
+
"100%|████████████████████████████████████████████████████████████████████████████████████████| 255/255 [00:49<00:00, 5.15it/s]\n",
|
| 262 |
+
"100%|██████████████████████████████████████████████████████████████████████████████████████████| 29/29 [00:03<00:00, 7.56it/s]\n"
|
| 263 |
+
]
|
| 264 |
+
},
|
| 265 |
+
{
|
| 266 |
+
"name": "stdout",
|
| 267 |
+
"output_type": "stream",
|
| 268 |
+
"text": [
|
| 269 |
+
"epoch=0: train_ppl=tensor(2760654.5000, device='cuda:0') train_epoch_loss=tensor(14.8310, device='cuda:0') eval_ppl=tensor(1.0124, device='cuda:0') eval_epoch_loss=tensor(0.0124, device='cuda:0')\n"
|
| 270 |
+
]
|
| 271 |
+
},
|
| 272 |
+
{
|
| 273 |
+
"name": "stderr",
|
| 274 |
+
"output_type": "stream",
|
| 275 |
+
"text": [
|
| 276 |
+
"100%|████████████████████████████████████████████████████████████████████████████████████████| 255/255 [00:40<00:00, 6.22it/s]\n",
|
| 277 |
+
"100%|██████████████████████████████████████████████████████████████████████████████████████████| 29/29 [00:05<00:00, 5.05it/s]\n"
|
| 278 |
+
]
|
| 279 |
+
},
|
| 280 |
+
{
|
| 281 |
+
"name": "stdout",
|
| 282 |
+
"output_type": "stream",
|
| 283 |
+
"text": [
|
| 284 |
+
"epoch=1: train_ppl=tensor(2.7329, device='cuda:0') train_epoch_loss=tensor(1.0054, device='cuda:0') eval_ppl=tensor(1.0081, device='cuda:0') eval_epoch_loss=tensor(0.0080, device='cuda:0')\n"
|
| 285 |
+
]
|
| 286 |
+
},
|
| 287 |
+
{
|
| 288 |
+
"name": "stderr",
|
| 289 |
+
"output_type": "stream",
|
| 290 |
+
"text": [
|
| 291 |
+
"100%|████████████████████████████████████████████████████████████████████████████████████████| 255/255 [00:58<00:00, 4.36it/s]\n",
|
| 292 |
+
"100%|██████████████████████████████████████████████████████████████████████████████████████████| 29/29 [00:05<00:00, 5.05it/s]\n"
|
| 293 |
+
]
|
| 294 |
+
},
|
| 295 |
+
{
|
| 296 |
+
"name": "stdout",
|
| 297 |
+
"output_type": "stream",
|
| 298 |
+
"text": [
|
| 299 |
+
"epoch=2: train_ppl=tensor(2.1698, device='cuda:0') train_epoch_loss=tensor(0.7747, device='cuda:0') eval_ppl=tensor(1.0057, device='cuda:0') eval_epoch_loss=tensor(0.0057, device='cuda:0')\n"
|
| 300 |
+
]
|
| 301 |
+
},
|
| 302 |
+
{
|
| 303 |
+
"name": "stderr",
|
| 304 |
+
"output_type": "stream",
|
| 305 |
+
"text": [
|
| 306 |
+
"100%|████████████████████████████████████████████████████████████████████████████████████████| 255/255 [00:58<00:00, 4.35it/s]\n",
|
| 307 |
+
"100%|██████████████████████████████████████████████████████████████████████████████████████████| 29/29 [00:05<00:00, 5.06it/s]\n"
|
| 308 |
+
]
|
| 309 |
+
},
|
| 310 |
+
{
|
| 311 |
+
"name": "stdout",
|
| 312 |
+
"output_type": "stream",
|
| 313 |
+
"text": [
|
| 314 |
+
"epoch=3: train_ppl=tensor(2.0724, device='cuda:0') train_epoch_loss=tensor(0.7287, device='cuda:0') eval_ppl=tensor(1.0051, device='cuda:0') eval_epoch_loss=tensor(0.0051, device='cuda:0')\n"
|
| 315 |
+
]
|
| 316 |
+
},
|
| 317 |
+
{
|
| 318 |
+
"name": "stderr",
|
| 319 |
+
"output_type": "stream",
|
| 320 |
+
"text": [
|
| 321 |
+
"100%|████████████████████████████████████████████████████████████████████████████████████████| 255/255 [01:02<00:00, 4.10it/s]\n",
|
| 322 |
+
"100%|██████████████████████████████████████████████████████████████████████████████████████████| 29/29 [00:06<00:00, 4.74it/s]\n"
|
| 323 |
+
]
|
| 324 |
+
},
|
| 325 |
+
{
|
| 326 |
+
"name": "stdout",
|
| 327 |
+
"output_type": "stream",
|
| 328 |
+
"text": [
|
| 329 |
+
"epoch=4: train_ppl=tensor(1.7598, device='cuda:0') train_epoch_loss=tensor(0.5652, device='cuda:0') eval_ppl=tensor(1.0047, device='cuda:0') eval_epoch_loss=tensor(0.0047, device='cuda:0')\n"
|
| 330 |
+
]
|
| 331 |
+
}
|
| 332 |
+
],
|
| 333 |
+
"source": [
|
| 334 |
+
"# training and evaluation\n",
|
| 335 |
+
"model = model.to(device)\n",
|
| 336 |
+
"\n",
|
| 337 |
+
"for epoch in range(num_epochs):\n",
|
| 338 |
+
" model.train()\n",
|
| 339 |
+
" total_loss = 0\n",
|
| 340 |
+
" for step, batch in enumerate(tqdm(train_dataloader)):\n",
|
| 341 |
+
" batch = {k: v.to(device) for k, v in batch.items()}\n",
|
| 342 |
+
" outputs = model(**batch)\n",
|
| 343 |
+
" loss = outputs.loss\n",
|
| 344 |
+
" total_loss += loss.detach().float()\n",
|
| 345 |
+
" loss.backward()\n",
|
| 346 |
+
" optimizer.step()\n",
|
| 347 |
+
" lr_scheduler.step()\n",
|
| 348 |
+
" optimizer.zero_grad()\n",
|
| 349 |
+
"\n",
|
| 350 |
+
" model.eval()\n",
|
| 351 |
+
" eval_loss = 0\n",
|
| 352 |
+
" eval_preds = []\n",
|
| 353 |
+
" for step, batch in enumerate(tqdm(eval_dataloader)):\n",
|
| 354 |
+
" batch = {k: v.to(device) for k, v in batch.items()}\n",
|
| 355 |
+
" with torch.no_grad():\n",
|
| 356 |
+
" outputs = model(**batch)\n",
|
| 357 |
+
" loss = outputs.loss\n",
|
| 358 |
+
" eval_loss += loss.detach().float()\n",
|
| 359 |
+
" eval_preds.extend(\n",
|
| 360 |
+
" tokenizer.batch_decode(torch.argmax(outputs.logits, -1).detach().cpu().numpy(), skip_special_tokens=True)\n",
|
| 361 |
+
" )\n",
|
| 362 |
+
"\n",
|
| 363 |
+
" eval_epoch_loss = eval_loss / len(eval_dataloader)\n",
|
| 364 |
+
" eval_ppl = torch.exp(eval_epoch_loss)\n",
|
| 365 |
+
" train_epoch_loss = total_loss / len(train_dataloader)\n",
|
| 366 |
+
" train_ppl = torch.exp(train_epoch_loss)\n",
|
| 367 |
+
" print(f\"{epoch=}: {train_ppl=} {train_epoch_loss=} {eval_ppl=} {eval_epoch_loss=}\")"
|
| 368 |
+
]
|
| 369 |
+
},
|
| 370 |
+
{
|
| 371 |
+
"cell_type": "code",
|
| 372 |
+
"execution_count": 7,
|
| 373 |
+
"id": "6cafa67b",
|
| 374 |
+
"metadata": {},
|
| 375 |
+
"outputs": [
|
| 376 |
+
{
|
| 377 |
+
"name": "stdout",
|
| 378 |
+
"output_type": "stream",
|
| 379 |
+
"text": [
|
| 380 |
+
"accuracy=96.91629955947137 % on the evaluation dataset\n",
|
| 381 |
+
"eval_preds[:10]=['negative', 'positive', 'neutral', 'neutral', 'neutral', 'neutral', 'neutral', 'neutral', 'neutral', 'neutral']\n",
|
| 382 |
+
"dataset['validation']['text_label'][:10]=['negative', 'neutral', 'neutral', 'neutral', 'neutral', 'neutral', 'neutral', 'neutral', 'neutral', 'neutral']\n"
|
| 383 |
+
]
|
| 384 |
+
}
|
| 385 |
+
],
|
| 386 |
+
"source": [
|
| 387 |
+
"# print accuracy\n",
|
| 388 |
+
"correct = 0\n",
|
| 389 |
+
"total = 0\n",
|
| 390 |
+
"for pred, true in zip(eval_preds, dataset[\"validation\"][\"text_label\"]):\n",
|
| 391 |
+
" if pred.strip() == true.strip():\n",
|
| 392 |
+
" correct += 1\n",
|
| 393 |
+
" total += 1\n",
|
| 394 |
+
"accuracy = correct / total * 100\n",
|
| 395 |
+
"print(f\"{accuracy=} % on the evaluation dataset\")\n",
|
| 396 |
+
"print(f\"{eval_preds[:10]=}\")\n",
|
| 397 |
+
"print(f\"{dataset['validation']['text_label'][:10]=}\")"
|
| 398 |
+
]
|
| 399 |
+
},
|
| 400 |
+
{
|
| 401 |
+
"cell_type": "code",
|
| 402 |
+
"execution_count": 8,
|
| 403 |
+
"id": "a8de6005",
|
| 404 |
+
"metadata": {},
|
| 405 |
+
"outputs": [],
|
| 406 |
+
"source": [
|
| 407 |
+
"# saving model\n",
|
| 408 |
+
"peft_model_id = f\"{model_name_or_path}_{peft_config.peft_type}_{peft_config.task_type}\"\n",
|
| 409 |
+
"model.save_pretrained(peft_model_id)"
|
| 410 |
+
]
|
| 411 |
+
},
|
| 412 |
+
{
|
| 413 |
+
"cell_type": "code",
|
| 414 |
+
"execution_count": 9,
|
| 415 |
+
"id": "bd20cd4c",
|
| 416 |
+
"metadata": {},
|
| 417 |
+
"outputs": [
|
| 418 |
+
{
|
| 419 |
+
"name": "stdout",
|
| 420 |
+
"output_type": "stream",
|
| 421 |
+
"text": [
|
| 422 |
+
"3,8M\tt5-large_PREFIX_TUNING_SEQ_2_SEQ_LM/adapter_model.bin\r\n"
|
| 423 |
+
]
|
| 424 |
+
}
|
| 425 |
+
],
|
| 426 |
+
"source": [
|
| 427 |
+
"ckpt = f\"{peft_model_id}/adapter_model.bin\"\n",
|
| 428 |
+
"!du -h $ckpt"
|
| 429 |
+
]
|
| 430 |
+
},
|
| 431 |
+
{
|
| 432 |
+
"cell_type": "code",
|
| 433 |
+
"execution_count": 11,
|
| 434 |
+
"id": "76c2fc29",
|
| 435 |
+
"metadata": {},
|
| 436 |
+
"outputs": [],
|
| 437 |
+
"source": [
|
| 438 |
+
"from peft import PeftModel, PeftConfig\n",
|
| 439 |
+
"\n",
|
| 440 |
+
"peft_model_id = f\"{model_name_or_path}_{peft_config.peft_type}_{peft_config.task_type}\"\n",
|
| 441 |
+
"\n",
|
| 442 |
+
"config = PeftConfig.from_pretrained(peft_model_id)\n",
|
| 443 |
+
"model = AutoModelForSeq2SeqLM.from_pretrained(config.base_model_name_or_path)\n",
|
| 444 |
+
"model = PeftModel.from_pretrained(model, peft_model_id)"
|
| 445 |
+
]
|
| 446 |
+
},
|
| 447 |
+
{
|
| 448 |
+
"cell_type": "code",
|
| 449 |
+
"execution_count": 27,
|
| 450 |
+
"id": "d997f1cc",
|
| 451 |
+
"metadata": {},
|
| 452 |
+
"outputs": [
|
| 453 |
+
{
|
| 454 |
+
"name": "stdout",
|
| 455 |
+
"output_type": "stream",
|
| 456 |
+
"text": [
|
| 457 |
+
"Acando AB ( ACANB SS ) fell 8.9 percent to 13.35 kronor , the lowest close since Dec. 11 .\n",
|
| 458 |
+
"{'input_ids': tensor([[ 4292, 232, 32, 3, 5359, 41, 3, 22029, 14972, 3,\n",
|
| 459 |
+
" 4256, 3, 61, 4728, 4848, 1298, 1093, 12, 8808, 2469,\n",
|
| 460 |
+
" 3, 22318, 29, 127, 3, 6, 8, 7402, 885, 437,\n",
|
| 461 |
+
" 4451, 5, 850, 3, 5, 1]]), 'attention_mask': tensor([[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,\n",
|
| 462 |
+
" 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]])}\n",
|
| 463 |
+
"tensor([[ 0, 2841, 1]])\n",
|
| 464 |
+
"['negative']\n"
|
| 465 |
+
]
|
| 466 |
+
}
|
| 467 |
+
],
|
| 468 |
+
"source": [
|
| 469 |
+
"model.eval()\n",
|
| 470 |
+
"i = 107\n",
|
| 471 |
+
"inputs = tokenizer(dataset[\"validation\"][text_column][i], return_tensors=\"pt\")\n",
|
| 472 |
+
"print(dataset[\"validation\"][text_column][i])\n",
|
| 473 |
+
"print(inputs)\n",
|
| 474 |
+
"\n",
|
| 475 |
+
"with torch.no_grad():\n",
|
| 476 |
+
" outputs = model.generate(input_ids=inputs[\"input_ids\"], max_new_tokens=10)\n",
|
| 477 |
+
" print(outputs)\n",
|
| 478 |
+
" print(tokenizer.batch_decode(outputs.detach().cpu().numpy(), skip_special_tokens=True))"
|
| 479 |
+
]
|
| 480 |
+
},
|
| 481 |
+
{
|
| 482 |
+
"cell_type": "code",
|
| 483 |
+
"execution_count": null,
|
| 484 |
+
"id": "fb746c1e",
|
| 485 |
+
"metadata": {},
|
| 486 |
+
"outputs": [],
|
| 487 |
+
"source": []
|
| 488 |
+
}
|
| 489 |
+
],
|
| 490 |
+
"metadata": {
|
| 491 |
+
"kernelspec": {
|
| 492 |
+
"display_name": "Python 3 (ipykernel)",
|
| 493 |
+
"language": "python",
|
| 494 |
+
"name": "python3"
|
| 495 |
+
},
|
| 496 |
+
"language_info": {
|
| 497 |
+
"codemirror_mode": {
|
| 498 |
+
"name": "ipython",
|
| 499 |
+
"version": 3
|
| 500 |
+
},
|
| 501 |
+
"file_extension": ".py",
|
| 502 |
+
"mimetype": "text/x-python",
|
| 503 |
+
"name": "python",
|
| 504 |
+
"nbconvert_exporter": "python",
|
| 505 |
+
"pygments_lexer": "ipython3",
|
| 506 |
+
"version": "3.10.5"
|
| 507 |
+
},
|
| 508 |
+
"vscode": {
|
| 509 |
+
"interpreter": {
|
| 510 |
+
"hash": "aee8b7b246df8f9039afb4144a1f6fd8d2ca17a180786b69acc140d282b71a49"
|
| 511 |
+
}
|
| 512 |
+
}
|
| 513 |
+
},
|
| 514 |
+
"nbformat": 4,
|
| 515 |
+
"nbformat_minor": 5
|
| 516 |
+
}
|
peft_prompt_tuning_seq2seq.ipynb
ADDED
|
@@ -0,0 +1,804 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"cells": [
|
| 3 |
+
{
|
| 4 |
+
"cell_type": "code",
|
| 5 |
+
"execution_count": 1,
|
| 6 |
+
"id": "5f93b7d1",
|
| 7 |
+
"metadata": {
|
| 8 |
+
"ExecuteTime": {
|
| 9 |
+
"end_time": "2023-05-30T08:37:58.711225Z",
|
| 10 |
+
"start_time": "2023-05-30T08:37:56.881307Z"
|
| 11 |
+
}
|
| 12 |
+
},
|
| 13 |
+
"outputs": [
|
| 14 |
+
{
|
| 15 |
+
"name": "stdout",
|
| 16 |
+
"output_type": "stream",
|
| 17 |
+
"text": [
|
| 18 |
+
"\n",
|
| 19 |
+
"===================================BUG REPORT===================================\n",
|
| 20 |
+
"Welcome to bitsandbytes. For bug reports, please run\n",
|
| 21 |
+
"\n",
|
| 22 |
+
"python -m bitsandbytes\n",
|
| 23 |
+
"\n",
|
| 24 |
+
" and submit this information together with your error trace to: https://github.com/TimDettmers/bitsandbytes/issues\n",
|
| 25 |
+
"================================================================================\n",
|
| 26 |
+
"bin /udir/tschilla/anaconda3/envs/peft/lib/python3.9/site-packages/bitsandbytes/libbitsandbytes_cuda117.so\n",
|
| 27 |
+
"CUDA_SETUP: WARNING! libcudart.so not found in any environmental path. Searching in backup paths...\n",
|
| 28 |
+
"CUDA SETUP: CUDA runtime path found: /usr/local/cuda/lib64/libcudart.so.11.0\n",
|
| 29 |
+
"CUDA SETUP: Highest compute capability among GPUs detected: 8.0\n",
|
| 30 |
+
"CUDA SETUP: Detected CUDA version 117\n",
|
| 31 |
+
"CUDA SETUP: Loading binary /udir/tschilla/anaconda3/envs/peft/lib/python3.9/site-packages/bitsandbytes/libbitsandbytes_cuda117.so...\n"
|
| 32 |
+
]
|
| 33 |
+
},
|
| 34 |
+
{
|
| 35 |
+
"name": "stderr",
|
| 36 |
+
"output_type": "stream",
|
| 37 |
+
"text": [
|
| 38 |
+
"/udir/tschilla/anaconda3/envs/peft/lib/python3.9/site-packages/bitsandbytes/cuda_setup/main.py:149: UserWarning: /udir/tschilla/anaconda3 did not contain ['libcudart.so', 'libcudart.so.11.0', 'libcudart.so.12.0'] as expected! Searching further paths...\n",
|
| 39 |
+
" warn(msg)\n",
|
| 40 |
+
"/udir/tschilla/anaconda3/envs/peft/lib/python3.9/site-packages/bitsandbytes/cuda_setup/main.py:149: UserWarning: WARNING: The following directories listed in your path were found to be non-existent: {PosixPath('Europe/Paris')}\n",
|
| 41 |
+
" warn(msg)\n",
|
| 42 |
+
"/udir/tschilla/anaconda3/envs/peft/lib/python3.9/site-packages/bitsandbytes/cuda_setup/main.py:149: UserWarning: WARNING: The following directories listed in your path were found to be non-existent: {PosixPath('/udir/tschilla/.cache/dotnet_bundle_extract')}\n",
|
| 43 |
+
" warn(msg)\n",
|
| 44 |
+
"/udir/tschilla/anaconda3/envs/peft/lib/python3.9/site-packages/bitsandbytes/cuda_setup/main.py:149: UserWarning: WARNING: The following directories listed in your path were found to be non-existent: {PosixPath('5002'), PosixPath('http'), PosixPath('//127.0.0.1')}\n",
|
| 45 |
+
" warn(msg)\n",
|
| 46 |
+
"/udir/tschilla/anaconda3/envs/peft/lib/python3.9/site-packages/bitsandbytes/cuda_setup/main.py:149: UserWarning: WARNING: The following directories listed in your path were found to be non-existent: {PosixPath('() { ( alias;\\n eval ${which_declare} ) | /usr/bin/which --tty-only --read-alias --read-functions --show-tilde --show-dot $@\\n}')}\n",
|
| 47 |
+
" warn(msg)\n",
|
| 48 |
+
"/udir/tschilla/anaconda3/envs/peft/lib/python3.9/site-packages/bitsandbytes/cuda_setup/main.py:149: UserWarning: WARNING: The following directories listed in your path were found to be non-existent: {PosixPath('module'), PosixPath('//matplotlib_inline.backend_inline')}\n",
|
| 49 |
+
" warn(msg)\n",
|
| 50 |
+
"/udir/tschilla/anaconda3/envs/peft/lib/python3.9/site-packages/bitsandbytes/cuda_setup/main.py:149: UserWarning: Found duplicate ['libcudart.so', 'libcudart.so.11.0', 'libcudart.so.12.0'] files: {PosixPath('/usr/local/cuda/lib64/libcudart.so.11.0'), PosixPath('/usr/local/cuda/lib64/libcudart.so')}.. We'll flip a coin and try one of these, in order to fail forward.\n",
|
| 51 |
+
"Either way, this might cause trouble in the future:\n",
|
| 52 |
+
"If you get `CUDA error: invalid device function` errors, the above might be the cause and the solution is to make sure only one ['libcudart.so', 'libcudart.so.11.0', 'libcudart.so.12.0'] in the paths that we search based on your env.\n",
|
| 53 |
+
" warn(msg)\n"
|
| 54 |
+
]
|
| 55 |
+
}
|
| 56 |
+
],
|
| 57 |
+
"source": [
|
| 58 |
+
"import os\n",
|
| 59 |
+
"\n",
|
| 60 |
+
"import torch\n",
|
| 61 |
+
"from transformers import AutoModelForSeq2SeqLM, AutoTokenizer, default_data_collator, get_linear_schedule_with_warmup\n",
|
| 62 |
+
"from peft import get_peft_model, PromptTuningConfig, TaskType, PromptTuningInit\n",
|
| 63 |
+
"from torch.utils.data import DataLoader\n",
|
| 64 |
+
"from tqdm import tqdm\n",
|
| 65 |
+
"from datasets import load_dataset\n",
|
| 66 |
+
"\n",
|
| 67 |
+
"os.environ[\"TOKENIZERS_PARALLELISM\"] = \"false\"\n",
|
| 68 |
+
"\n",
|
| 69 |
+
"device = \"cuda\"\n",
|
| 70 |
+
"model_name_or_path = \"t5-large\"\n",
|
| 71 |
+
"tokenizer_name_or_path = \"t5-large\"\n",
|
| 72 |
+
"\n",
|
| 73 |
+
"checkpoint_name = \"financial_sentiment_analysis_prompt_tuning_v1.pt\"\n",
|
| 74 |
+
"text_column = \"sentence\"\n",
|
| 75 |
+
"label_column = \"text_label\"\n",
|
| 76 |
+
"max_length = 128\n",
|
| 77 |
+
"lr = 1\n",
|
| 78 |
+
"num_epochs = 5\n",
|
| 79 |
+
"batch_size = 8"
|
| 80 |
+
]
|
| 81 |
+
},
|
| 82 |
+
{
|
| 83 |
+
"cell_type": "code",
|
| 84 |
+
"execution_count": 2,
|
| 85 |
+
"id": "8d0850ac",
|
| 86 |
+
"metadata": {
|
| 87 |
+
"ExecuteTime": {
|
| 88 |
+
"end_time": "2023-05-30T08:38:12.413984Z",
|
| 89 |
+
"start_time": "2023-05-30T08:38:04.601042Z"
|
| 90 |
+
}
|
| 91 |
+
},
|
| 92 |
+
"outputs": [
|
| 93 |
+
{
|
| 94 |
+
"name": "stdout",
|
| 95 |
+
"output_type": "stream",
|
| 96 |
+
"text": [
|
| 97 |
+
"trainable params: 40960 || all params: 737709056 || trainable%: 0.005552324411210698\n"
|
| 98 |
+
]
|
| 99 |
+
},
|
| 100 |
+
{
|
| 101 |
+
"name": "stderr",
|
| 102 |
+
"output_type": "stream",
|
| 103 |
+
"text": [
|
| 104 |
+
"/udir/tschilla/anaconda3/envs/peft/lib/python3.9/site-packages/transformers/models/t5/tokenization_t5_fast.py:155: FutureWarning: This tokenizer was incorrectly instantiated with a model max length of 512 which will be corrected in Transformers v5.\n",
|
| 105 |
+
"For now, this behavior is kept to avoid breaking backwards compatibility when padding/encoding with `truncation is True`.\n",
|
| 106 |
+
"- Be aware that you SHOULD NOT rely on t5-large automatically truncating your input to 512 when padding/encoding.\n",
|
| 107 |
+
"- If you want to encode/pad to sequences longer than 512 you can either instantiate this tokenizer with `model_max_length` or pass `max_length` when encoding/padding.\n",
|
| 108 |
+
"- To avoid this warning, please instantiate this tokenizer with `model_max_length` set to your preferred value.\n",
|
| 109 |
+
" warnings.warn(\n"
|
| 110 |
+
]
|
| 111 |
+
},
|
| 112 |
+
{
|
| 113 |
+
"data": {
|
| 114 |
+
"text/plain": [
|
| 115 |
+
"PeftModelForSeq2SeqLM(\n",
|
| 116 |
+
" (base_model): T5ForConditionalGeneration(\n",
|
| 117 |
+
" (shared): Embedding(32128, 1024)\n",
|
| 118 |
+
" (encoder): T5Stack(\n",
|
| 119 |
+
" (embed_tokens): Embedding(32128, 1024)\n",
|
| 120 |
+
" (block): ModuleList(\n",
|
| 121 |
+
" (0): T5Block(\n",
|
| 122 |
+
" (layer): ModuleList(\n",
|
| 123 |
+
" (0): T5LayerSelfAttention(\n",
|
| 124 |
+
" (SelfAttention): T5Attention(\n",
|
| 125 |
+
" (q): Linear(in_features=1024, out_features=1024, bias=False)\n",
|
| 126 |
+
" (k): Linear(in_features=1024, out_features=1024, bias=False)\n",
|
| 127 |
+
" (v): Linear(in_features=1024, out_features=1024, bias=False)\n",
|
| 128 |
+
" (o): Linear(in_features=1024, out_features=1024, bias=False)\n",
|
| 129 |
+
" (relative_attention_bias): Embedding(32, 16)\n",
|
| 130 |
+
" )\n",
|
| 131 |
+
" (layer_norm): T5LayerNorm()\n",
|
| 132 |
+
" (dropout): Dropout(p=0.1, inplace=False)\n",
|
| 133 |
+
" )\n",
|
| 134 |
+
" (1): T5LayerFF(\n",
|
| 135 |
+
" (DenseReluDense): T5DenseActDense(\n",
|
| 136 |
+
" (wi): Linear(in_features=1024, out_features=4096, bias=False)\n",
|
| 137 |
+
" (wo): Linear(in_features=4096, out_features=1024, bias=False)\n",
|
| 138 |
+
" (dropout): Dropout(p=0.1, inplace=False)\n",
|
| 139 |
+
" (act): ReLU()\n",
|
| 140 |
+
" )\n",
|
| 141 |
+
" (layer_norm): T5LayerNorm()\n",
|
| 142 |
+
" (dropout): Dropout(p=0.1, inplace=False)\n",
|
| 143 |
+
" )\n",
|
| 144 |
+
" )\n",
|
| 145 |
+
" )\n",
|
| 146 |
+
" (1-23): 23 x T5Block(\n",
|
| 147 |
+
" (layer): ModuleList(\n",
|
| 148 |
+
" (0): T5LayerSelfAttention(\n",
|
| 149 |
+
" (SelfAttention): T5Attention(\n",
|
| 150 |
+
" (q): Linear(in_features=1024, out_features=1024, bias=False)\n",
|
| 151 |
+
" (k): Linear(in_features=1024, out_features=1024, bias=False)\n",
|
| 152 |
+
" (v): Linear(in_features=1024, out_features=1024, bias=False)\n",
|
| 153 |
+
" (o): Linear(in_features=1024, out_features=1024, bias=False)\n",
|
| 154 |
+
" )\n",
|
| 155 |
+
" (layer_norm): T5LayerNorm()\n",
|
| 156 |
+
" (dropout): Dropout(p=0.1, inplace=False)\n",
|
| 157 |
+
" )\n",
|
| 158 |
+
" (1): T5LayerFF(\n",
|
| 159 |
+
" (DenseReluDense): T5DenseActDense(\n",
|
| 160 |
+
" (wi): Linear(in_features=1024, out_features=4096, bias=False)\n",
|
| 161 |
+
" (wo): Linear(in_features=4096, out_features=1024, bias=False)\n",
|
| 162 |
+
" (dropout): Dropout(p=0.1, inplace=False)\n",
|
| 163 |
+
" (act): ReLU()\n",
|
| 164 |
+
" )\n",
|
| 165 |
+
" (layer_norm): T5LayerNorm()\n",
|
| 166 |
+
" (dropout): Dropout(p=0.1, inplace=False)\n",
|
| 167 |
+
" )\n",
|
| 168 |
+
" )\n",
|
| 169 |
+
" )\n",
|
| 170 |
+
" )\n",
|
| 171 |
+
" (final_layer_norm): T5LayerNorm()\n",
|
| 172 |
+
" (dropout): Dropout(p=0.1, inplace=False)\n",
|
| 173 |
+
" )\n",
|
| 174 |
+
" (decoder): T5Stack(\n",
|
| 175 |
+
" (embed_tokens): Embedding(32128, 1024)\n",
|
| 176 |
+
" (block): ModuleList(\n",
|
| 177 |
+
" (0): T5Block(\n",
|
| 178 |
+
" (layer): ModuleList(\n",
|
| 179 |
+
" (0): T5LayerSelfAttention(\n",
|
| 180 |
+
" (SelfAttention): T5Attention(\n",
|
| 181 |
+
" (q): Linear(in_features=1024, out_features=1024, bias=False)\n",
|
| 182 |
+
" (k): Linear(in_features=1024, out_features=1024, bias=False)\n",
|
| 183 |
+
" (v): Linear(in_features=1024, out_features=1024, bias=False)\n",
|
| 184 |
+
" (o): Linear(in_features=1024, out_features=1024, bias=False)\n",
|
| 185 |
+
" (relative_attention_bias): Embedding(32, 16)\n",
|
| 186 |
+
" )\n",
|
| 187 |
+
" (layer_norm): T5LayerNorm()\n",
|
| 188 |
+
" (dropout): Dropout(p=0.1, inplace=False)\n",
|
| 189 |
+
" )\n",
|
| 190 |
+
" (1): T5LayerCrossAttention(\n",
|
| 191 |
+
" (EncDecAttention): T5Attention(\n",
|
| 192 |
+
" (q): Linear(in_features=1024, out_features=1024, bias=False)\n",
|
| 193 |
+
" (k): Linear(in_features=1024, out_features=1024, bias=False)\n",
|
| 194 |
+
" (v): Linear(in_features=1024, out_features=1024, bias=False)\n",
|
| 195 |
+
" (o): Linear(in_features=1024, out_features=1024, bias=False)\n",
|
| 196 |
+
" )\n",
|
| 197 |
+
" (layer_norm): T5LayerNorm()\n",
|
| 198 |
+
" (dropout): Dropout(p=0.1, inplace=False)\n",
|
| 199 |
+
" )\n",
|
| 200 |
+
" (2): T5LayerFF(\n",
|
| 201 |
+
" (DenseReluDense): T5DenseActDense(\n",
|
| 202 |
+
" (wi): Linear(in_features=1024, out_features=4096, bias=False)\n",
|
| 203 |
+
" (wo): Linear(in_features=4096, out_features=1024, bias=False)\n",
|
| 204 |
+
" (dropout): Dropout(p=0.1, inplace=False)\n",
|
| 205 |
+
" (act): ReLU()\n",
|
| 206 |
+
" )\n",
|
| 207 |
+
" (layer_norm): T5LayerNorm()\n",
|
| 208 |
+
" (dropout): Dropout(p=0.1, inplace=False)\n",
|
| 209 |
+
" )\n",
|
| 210 |
+
" )\n",
|
| 211 |
+
" )\n",
|
| 212 |
+
" (1-23): 23 x T5Block(\n",
|
| 213 |
+
" (layer): ModuleList(\n",
|
| 214 |
+
" (0): T5LayerSelfAttention(\n",
|
| 215 |
+
" (SelfAttention): T5Attention(\n",
|
| 216 |
+
" (q): Linear(in_features=1024, out_features=1024, bias=False)\n",
|
| 217 |
+
" (k): Linear(in_features=1024, out_features=1024, bias=False)\n",
|
| 218 |
+
" (v): Linear(in_features=1024, out_features=1024, bias=False)\n",
|
| 219 |
+
" (o): Linear(in_features=1024, out_features=1024, bias=False)\n",
|
| 220 |
+
" )\n",
|
| 221 |
+
" (layer_norm): T5LayerNorm()\n",
|
| 222 |
+
" (dropout): Dropout(p=0.1, inplace=False)\n",
|
| 223 |
+
" )\n",
|
| 224 |
+
" (1): T5LayerCrossAttention(\n",
|
| 225 |
+
" (EncDecAttention): T5Attention(\n",
|
| 226 |
+
" (q): Linear(in_features=1024, out_features=1024, bias=False)\n",
|
| 227 |
+
" (k): Linear(in_features=1024, out_features=1024, bias=False)\n",
|
| 228 |
+
" (v): Linear(in_features=1024, out_features=1024, bias=False)\n",
|
| 229 |
+
" (o): Linear(in_features=1024, out_features=1024, bias=False)\n",
|
| 230 |
+
" )\n",
|
| 231 |
+
" (layer_norm): T5LayerNorm()\n",
|
| 232 |
+
" (dropout): Dropout(p=0.1, inplace=False)\n",
|
| 233 |
+
" )\n",
|
| 234 |
+
" (2): T5LayerFF(\n",
|
| 235 |
+
" (DenseReluDense): T5DenseActDense(\n",
|
| 236 |
+
" (wi): Linear(in_features=1024, out_features=4096, bias=False)\n",
|
| 237 |
+
" (wo): Linear(in_features=4096, out_features=1024, bias=False)\n",
|
| 238 |
+
" (dropout): Dropout(p=0.1, inplace=False)\n",
|
| 239 |
+
" (act): ReLU()\n",
|
| 240 |
+
" )\n",
|
| 241 |
+
" (layer_norm): T5LayerNorm()\n",
|
| 242 |
+
" (dropout): Dropout(p=0.1, inplace=False)\n",
|
| 243 |
+
" )\n",
|
| 244 |
+
" )\n",
|
| 245 |
+
" )\n",
|
| 246 |
+
" )\n",
|
| 247 |
+
" (final_layer_norm): T5LayerNorm()\n",
|
| 248 |
+
" (dropout): Dropout(p=0.1, inplace=False)\n",
|
| 249 |
+
" )\n",
|
| 250 |
+
" (lm_head): Linear(in_features=1024, out_features=32128, bias=False)\n",
|
| 251 |
+
" )\n",
|
| 252 |
+
" (prompt_encoder): ModuleDict(\n",
|
| 253 |
+
" (default): PromptEmbedding(\n",
|
| 254 |
+
" (embedding): Embedding(40, 1024)\n",
|
| 255 |
+
" )\n",
|
| 256 |
+
" )\n",
|
| 257 |
+
" (word_embeddings): Embedding(32128, 1024)\n",
|
| 258 |
+
")"
|
| 259 |
+
]
|
| 260 |
+
},
|
| 261 |
+
"execution_count": 2,
|
| 262 |
+
"metadata": {},
|
| 263 |
+
"output_type": "execute_result"
|
| 264 |
+
}
|
| 265 |
+
],
|
| 266 |
+
"source": [
|
| 267 |
+
"# creating model\n",
|
| 268 |
+
"peft_config = PromptTuningConfig(\n",
|
| 269 |
+
" task_type=TaskType.SEQ_2_SEQ_LM,\n",
|
| 270 |
+
" prompt_tuning_init=PromptTuningInit.TEXT,\n",
|
| 271 |
+
" num_virtual_tokens=20,\n",
|
| 272 |
+
" prompt_tuning_init_text=\"What is the sentiment of this article?\\n\",\n",
|
| 273 |
+
" inference_mode=False,\n",
|
| 274 |
+
" tokenizer_name_or_path=model_name_or_path,\n",
|
| 275 |
+
")\n",
|
| 276 |
+
"\n",
|
| 277 |
+
"model = AutoModelForSeq2SeqLM.from_pretrained(model_name_or_path)\n",
|
| 278 |
+
"model = get_peft_model(model, peft_config)\n",
|
| 279 |
+
"model.print_trainable_parameters()\n",
|
| 280 |
+
"model"
|
| 281 |
+
]
|
| 282 |
+
},
|
| 283 |
+
{
|
| 284 |
+
"cell_type": "code",
|
| 285 |
+
"execution_count": 3,
|
| 286 |
+
"id": "4ee2babf",
|
| 287 |
+
"metadata": {
|
| 288 |
+
"ExecuteTime": {
|
| 289 |
+
"end_time": "2023-05-30T08:38:18.759143Z",
|
| 290 |
+
"start_time": "2023-05-30T08:38:17.881621Z"
|
| 291 |
+
}
|
| 292 |
+
},
|
| 293 |
+
"outputs": [
|
| 294 |
+
{
|
| 295 |
+
"name": "stderr",
|
| 296 |
+
"output_type": "stream",
|
| 297 |
+
"text": [
|
| 298 |
+
"Found cached dataset financial_phrasebank (/data/proxem/huggingface/datasets/financial_phrasebank/sentences_allagree/1.0.0/550bde12e6c30e2674da973a55f57edde5181d53f5a5a34c1531c53f93b7e141)\n"
|
| 299 |
+
]
|
| 300 |
+
},
|
| 301 |
+
{
|
| 302 |
+
"data": {
|
| 303 |
+
"application/vnd.jupyter.widget-view+json": {
|
| 304 |
+
"model_id": "fb63f50cb7cb4f5aae10648ba74d6c4e",
|
| 305 |
+
"version_major": 2,
|
| 306 |
+
"version_minor": 0
|
| 307 |
+
},
|
| 308 |
+
"text/plain": [
|
| 309 |
+
" 0%| | 0/1 [00:00<?, ?it/s]"
|
| 310 |
+
]
|
| 311 |
+
},
|
| 312 |
+
"metadata": {},
|
| 313 |
+
"output_type": "display_data"
|
| 314 |
+
},
|
| 315 |
+
{
|
| 316 |
+
"data": {
|
| 317 |
+
"application/vnd.jupyter.widget-view+json": {
|
| 318 |
+
"model_id": "",
|
| 319 |
+
"version_major": 2,
|
| 320 |
+
"version_minor": 0
|
| 321 |
+
},
|
| 322 |
+
"text/plain": [
|
| 323 |
+
"Map: 0%| | 0/2037 [00:00<?, ? examples/s]"
|
| 324 |
+
]
|
| 325 |
+
},
|
| 326 |
+
"metadata": {},
|
| 327 |
+
"output_type": "display_data"
|
| 328 |
+
},
|
| 329 |
+
{
|
| 330 |
+
"data": {
|
| 331 |
+
"application/vnd.jupyter.widget-view+json": {
|
| 332 |
+
"model_id": "",
|
| 333 |
+
"version_major": 2,
|
| 334 |
+
"version_minor": 0
|
| 335 |
+
},
|
| 336 |
+
"text/plain": [
|
| 337 |
+
"Map: 0%| | 0/227 [00:00<?, ? examples/s]"
|
| 338 |
+
]
|
| 339 |
+
},
|
| 340 |
+
"metadata": {},
|
| 341 |
+
"output_type": "display_data"
|
| 342 |
+
},
|
| 343 |
+
{
|
| 344 |
+
"data": {
|
| 345 |
+
"text/plain": [
|
| 346 |
+
"{'sentence': '`` Lining stone sales were also good in the early autumn , and order books are strong to the end of the year .',\n",
|
| 347 |
+
" 'label': 2,\n",
|
| 348 |
+
" 'text_label': 'positive'}"
|
| 349 |
+
]
|
| 350 |
+
},
|
| 351 |
+
"execution_count": 3,
|
| 352 |
+
"metadata": {},
|
| 353 |
+
"output_type": "execute_result"
|
| 354 |
+
}
|
| 355 |
+
],
|
| 356 |
+
"source": [
|
| 357 |
+
"# loading dataset\n",
|
| 358 |
+
"dataset = load_dataset(\"financial_phrasebank\", \"sentences_allagree\")\n",
|
| 359 |
+
"dataset = dataset[\"train\"].train_test_split(test_size=0.1)\n",
|
| 360 |
+
"dataset[\"validation\"] = dataset[\"test\"]\n",
|
| 361 |
+
"del dataset[\"test\"]\n",
|
| 362 |
+
"\n",
|
| 363 |
+
"classes = dataset[\"train\"].features[\"label\"].names\n",
|
| 364 |
+
"dataset = dataset.map(\n",
|
| 365 |
+
" lambda x: {\"text_label\": [classes[label] for label in x[\"label\"]]},\n",
|
| 366 |
+
" batched=True,\n",
|
| 367 |
+
" num_proc=1,\n",
|
| 368 |
+
")\n",
|
| 369 |
+
"\n",
|
| 370 |
+
"dataset[\"train\"][0]"
|
| 371 |
+
]
|
| 372 |
+
},
|
| 373 |
+
{
|
| 374 |
+
"cell_type": "code",
|
| 375 |
+
"execution_count": 4,
|
| 376 |
+
"id": "adf9608c",
|
| 377 |
+
"metadata": {
|
| 378 |
+
"ExecuteTime": {
|
| 379 |
+
"end_time": "2023-05-30T08:38:21.132266Z",
|
| 380 |
+
"start_time": "2023-05-30T08:38:20.340722Z"
|
| 381 |
+
}
|
| 382 |
+
},
|
| 383 |
+
"outputs": [
|
| 384 |
+
{
|
| 385 |
+
"data": {
|
| 386 |
+
"application/vnd.jupyter.widget-view+json": {
|
| 387 |
+
"model_id": "",
|
| 388 |
+
"version_major": 2,
|
| 389 |
+
"version_minor": 0
|
| 390 |
+
},
|
| 391 |
+
"text/plain": [
|
| 392 |
+
"Running tokenizer on dataset: 0%| | 0/2037 [00:00<?, ? examples/s]"
|
| 393 |
+
]
|
| 394 |
+
},
|
| 395 |
+
"metadata": {},
|
| 396 |
+
"output_type": "display_data"
|
| 397 |
+
},
|
| 398 |
+
{
|
| 399 |
+
"data": {
|
| 400 |
+
"application/vnd.jupyter.widget-view+json": {
|
| 401 |
+
"model_id": "",
|
| 402 |
+
"version_major": 2,
|
| 403 |
+
"version_minor": 0
|
| 404 |
+
},
|
| 405 |
+
"text/plain": [
|
| 406 |
+
"Running tokenizer on dataset: 0%| | 0/227 [00:00<?, ? examples/s]"
|
| 407 |
+
]
|
| 408 |
+
},
|
| 409 |
+
"metadata": {},
|
| 410 |
+
"output_type": "display_data"
|
| 411 |
+
}
|
| 412 |
+
],
|
| 413 |
+
"source": [
|
| 414 |
+
"# data preprocessing\n",
|
| 415 |
+
"tokenizer = AutoTokenizer.from_pretrained(model_name_or_path)\n",
|
| 416 |
+
"target_max_length = max([len(tokenizer(class_label)[\"input_ids\"]) for class_label in classes])\n",
|
| 417 |
+
"\n",
|
| 418 |
+
"\n",
|
| 419 |
+
"def preprocess_function(examples):\n",
|
| 420 |
+
" inputs = examples[text_column]\n",
|
| 421 |
+
" targets = examples[label_column]\n",
|
| 422 |
+
" model_inputs = tokenizer(inputs, max_length=max_length, padding=\"max_length\", truncation=True, return_tensors=\"pt\")\n",
|
| 423 |
+
" labels = tokenizer(\n",
|
| 424 |
+
" targets, max_length=target_max_length, padding=\"max_length\", truncation=True, return_tensors=\"pt\"\n",
|
| 425 |
+
" )\n",
|
| 426 |
+
" labels = labels[\"input_ids\"]\n",
|
| 427 |
+
" labels[labels == tokenizer.pad_token_id] = -100\n",
|
| 428 |
+
" model_inputs[\"labels\"] = labels\n",
|
| 429 |
+
" return model_inputs\n",
|
| 430 |
+
"\n",
|
| 431 |
+
"\n",
|
| 432 |
+
"processed_datasets = dataset.map(\n",
|
| 433 |
+
" preprocess_function,\n",
|
| 434 |
+
" batched=True,\n",
|
| 435 |
+
" num_proc=1,\n",
|
| 436 |
+
" remove_columns=dataset[\"train\"].column_names,\n",
|
| 437 |
+
" load_from_cache_file=False,\n",
|
| 438 |
+
" desc=\"Running tokenizer on dataset\",\n",
|
| 439 |
+
")\n",
|
| 440 |
+
"\n",
|
| 441 |
+
"train_dataset = processed_datasets[\"train\"]\n",
|
| 442 |
+
"eval_dataset = processed_datasets[\"validation\"]\n",
|
| 443 |
+
"\n",
|
| 444 |
+
"train_dataloader = DataLoader(\n",
|
| 445 |
+
" train_dataset, shuffle=True, collate_fn=default_data_collator, batch_size=batch_size, pin_memory=True\n",
|
| 446 |
+
")\n",
|
| 447 |
+
"eval_dataloader = DataLoader(eval_dataset, collate_fn=default_data_collator, batch_size=batch_size, pin_memory=True)"
|
| 448 |
+
]
|
| 449 |
+
},
|
| 450 |
+
{
|
| 451 |
+
"cell_type": "code",
|
| 452 |
+
"execution_count": 5,
|
| 453 |
+
"id": "f733a3c6",
|
| 454 |
+
"metadata": {
|
| 455 |
+
"ExecuteTime": {
|
| 456 |
+
"end_time": "2023-05-30T08:38:22.907922Z",
|
| 457 |
+
"start_time": "2023-05-30T08:38:22.901057Z"
|
| 458 |
+
}
|
| 459 |
+
},
|
| 460 |
+
"outputs": [],
|
| 461 |
+
"source": [
|
| 462 |
+
"# optimizer and lr scheduler\n",
|
| 463 |
+
"optimizer = torch.optim.AdamW(model.parameters(), lr=lr)\n",
|
| 464 |
+
"lr_scheduler = get_linear_schedule_with_warmup(\n",
|
| 465 |
+
" optimizer=optimizer,\n",
|
| 466 |
+
" num_warmup_steps=0,\n",
|
| 467 |
+
" num_training_steps=(len(train_dataloader) * num_epochs),\n",
|
| 468 |
+
")"
|
| 469 |
+
]
|
| 470 |
+
},
|
| 471 |
+
{
|
| 472 |
+
"cell_type": "code",
|
| 473 |
+
"execution_count": 7,
|
| 474 |
+
"id": "6b3a4090",
|
| 475 |
+
"metadata": {
|
| 476 |
+
"ExecuteTime": {
|
| 477 |
+
"end_time": "2023-05-30T08:42:29.409070Z",
|
| 478 |
+
"start_time": "2023-05-30T08:38:50.102263Z"
|
| 479 |
+
}
|
| 480 |
+
},
|
| 481 |
+
"outputs": [
|
| 482 |
+
{
|
| 483 |
+
"name": "stderr",
|
| 484 |
+
"output_type": "stream",
|
| 485 |
+
"text": [
|
| 486 |
+
"100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 255/255 [00:42<00:00, 6.05it/s]\n",
|
| 487 |
+
"100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 29/29 [00:02<00:00, 14.40it/s]\n"
|
| 488 |
+
]
|
| 489 |
+
},
|
| 490 |
+
{
|
| 491 |
+
"name": "stdout",
|
| 492 |
+
"output_type": "stream",
|
| 493 |
+
"text": [
|
| 494 |
+
"epoch=0: train_ppl=tensor(8.0846, device='cuda:0') train_epoch_loss=tensor(2.0900, device='cuda:0') eval_ppl=tensor(1.3542, device='cuda:0') eval_epoch_loss=tensor(0.3032, device='cuda:0')\n"
|
| 495 |
+
]
|
| 496 |
+
},
|
| 497 |
+
{
|
| 498 |
+
"name": "stderr",
|
| 499 |
+
"output_type": "stream",
|
| 500 |
+
"text": [
|
| 501 |
+
"100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 255/255 [00:41<00:00, 6.15it/s]\n",
|
| 502 |
+
"100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 29/29 [00:02<00:00, 14.42it/s]\n"
|
| 503 |
+
]
|
| 504 |
+
},
|
| 505 |
+
{
|
| 506 |
+
"name": "stdout",
|
| 507 |
+
"output_type": "stream",
|
| 508 |
+
"text": [
|
| 509 |
+
"epoch=1: train_ppl=tensor(1.5088, device='cuda:0') train_epoch_loss=tensor(0.4113, device='cuda:0') eval_ppl=tensor(1.2692, device='cuda:0') eval_epoch_loss=tensor(0.2384, device='cuda:0')\n"
|
| 510 |
+
]
|
| 511 |
+
},
|
| 512 |
+
{
|
| 513 |
+
"name": "stderr",
|
| 514 |
+
"output_type": "stream",
|
| 515 |
+
"text": [
|
| 516 |
+
"100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 255/255 [00:41<00:00, 6.18it/s]\n",
|
| 517 |
+
"100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 29/29 [00:02<00:00, 14.45it/s]\n"
|
| 518 |
+
]
|
| 519 |
+
},
|
| 520 |
+
{
|
| 521 |
+
"name": "stdout",
|
| 522 |
+
"output_type": "stream",
|
| 523 |
+
"text": [
|
| 524 |
+
"epoch=2: train_ppl=tensor(1.5322, device='cuda:0') train_epoch_loss=tensor(0.4267, device='cuda:0') eval_ppl=tensor(1.2065, device='cuda:0') eval_epoch_loss=tensor(0.1877, device='cuda:0')\n"
|
| 525 |
+
]
|
| 526 |
+
},
|
| 527 |
+
{
|
| 528 |
+
"name": "stderr",
|
| 529 |
+
"output_type": "stream",
|
| 530 |
+
"text": [
|
| 531 |
+
"100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 255/255 [00:41<00:00, 6.17it/s]\n",
|
| 532 |
+
"100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 29/29 [00:02<00:00, 14.38it/s]\n"
|
| 533 |
+
]
|
| 534 |
+
},
|
| 535 |
+
{
|
| 536 |
+
"name": "stdout",
|
| 537 |
+
"output_type": "stream",
|
| 538 |
+
"text": [
|
| 539 |
+
"epoch=3: train_ppl=tensor(1.4475, device='cuda:0') train_epoch_loss=tensor(0.3699, device='cuda:0') eval_ppl=tensor(1.2346, device='cuda:0') eval_epoch_loss=tensor(0.2107, device='cuda:0')\n"
|
| 540 |
+
]
|
| 541 |
+
},
|
| 542 |
+
{
|
| 543 |
+
"name": "stderr",
|
| 544 |
+
"output_type": "stream",
|
| 545 |
+
"text": [
|
| 546 |
+
"100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 255/255 [00:42<00:00, 5.94it/s]\n",
|
| 547 |
+
"100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 29/29 [00:02<00:00, 14.42it/s]"
|
| 548 |
+
]
|
| 549 |
+
},
|
| 550 |
+
{
|
| 551 |
+
"name": "stdout",
|
| 552 |
+
"output_type": "stream",
|
| 553 |
+
"text": [
|
| 554 |
+
"epoch=4: train_ppl=tensor(1.3428, device='cuda:0') train_epoch_loss=tensor(0.2948, device='cuda:0') eval_ppl=tensor(1.2041, device='cuda:0') eval_epoch_loss=tensor(0.1857, device='cuda:0')\n"
|
| 555 |
+
]
|
| 556 |
+
},
|
| 557 |
+
{
|
| 558 |
+
"name": "stderr",
|
| 559 |
+
"output_type": "stream",
|
| 560 |
+
"text": [
|
| 561 |
+
"\n"
|
| 562 |
+
]
|
| 563 |
+
}
|
| 564 |
+
],
|
| 565 |
+
"source": [
|
| 566 |
+
"# training and evaluation\n",
|
| 567 |
+
"model = model.to(device)\n",
|
| 568 |
+
"\n",
|
| 569 |
+
"for epoch in range(num_epochs):\n",
|
| 570 |
+
" model.train()\n",
|
| 571 |
+
" total_loss = 0\n",
|
| 572 |
+
" for step, batch in enumerate(tqdm(train_dataloader)):\n",
|
| 573 |
+
" batch = {k: v.to(device) for k, v in batch.items()}\n",
|
| 574 |
+
" outputs = model(**batch)\n",
|
| 575 |
+
" loss = outputs.loss\n",
|
| 576 |
+
" total_loss += loss.detach().float()\n",
|
| 577 |
+
" loss.backward()\n",
|
| 578 |
+
" optimizer.step()\n",
|
| 579 |
+
" lr_scheduler.step()\n",
|
| 580 |
+
" optimizer.zero_grad()\n",
|
| 581 |
+
"\n",
|
| 582 |
+
" model.eval()\n",
|
| 583 |
+
" eval_loss = 0\n",
|
| 584 |
+
" eval_preds = []\n",
|
| 585 |
+
" for step, batch in enumerate(tqdm(eval_dataloader)):\n",
|
| 586 |
+
" batch = {k: v.to(device) for k, v in batch.items()}\n",
|
| 587 |
+
" with torch.no_grad():\n",
|
| 588 |
+
" outputs = model(**batch)\n",
|
| 589 |
+
" loss = outputs.loss\n",
|
| 590 |
+
" eval_loss += loss.detach().float()\n",
|
| 591 |
+
" eval_preds.extend(\n",
|
| 592 |
+
" tokenizer.batch_decode(torch.argmax(outputs.logits, -1).detach().cpu().numpy(), skip_special_tokens=True)\n",
|
| 593 |
+
" )\n",
|
| 594 |
+
"\n",
|
| 595 |
+
" eval_epoch_loss = eval_loss / len(eval_dataloader)\n",
|
| 596 |
+
" eval_ppl = torch.exp(eval_epoch_loss)\n",
|
| 597 |
+
" train_epoch_loss = total_loss / len(train_dataloader)\n",
|
| 598 |
+
" train_ppl = torch.exp(train_epoch_loss)\n",
|
| 599 |
+
" print(f\"{epoch=}: {train_ppl=} {train_epoch_loss=} {eval_ppl=} {eval_epoch_loss=}\")"
|
| 600 |
+
]
|
| 601 |
+
},
|
| 602 |
+
{
|
| 603 |
+
"cell_type": "code",
|
| 604 |
+
"execution_count": 8,
|
| 605 |
+
"id": "6cafa67b",
|
| 606 |
+
"metadata": {
|
| 607 |
+
"ExecuteTime": {
|
| 608 |
+
"end_time": "2023-05-30T08:42:42.844671Z",
|
| 609 |
+
"start_time": "2023-05-30T08:42:42.840447Z"
|
| 610 |
+
}
|
| 611 |
+
},
|
| 612 |
+
"outputs": [
|
| 613 |
+
{
|
| 614 |
+
"name": "stdout",
|
| 615 |
+
"output_type": "stream",
|
| 616 |
+
"text": [
|
| 617 |
+
"accuracy=85.46255506607929 % on the evaluation dataset\n",
|
| 618 |
+
"eval_preds[:10]=['neutral', 'neutral', 'neutral', 'neutral', 'neutral', 'positive', 'neutral', 'negative', 'neutral', 'positive']\n",
|
| 619 |
+
"dataset['validation']['text_label'][:10]=['neutral', 'neutral', 'neutral', 'neutral', 'neutral', 'positive', 'neutral', 'negative', 'positive', 'neutral']\n"
|
| 620 |
+
]
|
| 621 |
+
}
|
| 622 |
+
],
|
| 623 |
+
"source": [
|
| 624 |
+
"# print accuracy\n",
|
| 625 |
+
"correct = 0\n",
|
| 626 |
+
"total = 0\n",
|
| 627 |
+
"for pred, true in zip(eval_preds, dataset[\"validation\"][\"text_label\"]):\n",
|
| 628 |
+
" if pred.strip() == true.strip():\n",
|
| 629 |
+
" correct += 1\n",
|
| 630 |
+
" total += 1\n",
|
| 631 |
+
"accuracy = correct / total * 100\n",
|
| 632 |
+
"print(f\"{accuracy=} % on the evaluation dataset\")\n",
|
| 633 |
+
"print(f\"{eval_preds[:10]=}\")\n",
|
| 634 |
+
"print(f\"{dataset['validation']['text_label'][:10]=}\")"
|
| 635 |
+
]
|
| 636 |
+
},
|
| 637 |
+
{
|
| 638 |
+
"cell_type": "code",
|
| 639 |
+
"execution_count": 9,
|
| 640 |
+
"id": "a8de6005",
|
| 641 |
+
"metadata": {
|
| 642 |
+
"ExecuteTime": {
|
| 643 |
+
"end_time": "2023-05-30T08:42:45.752765Z",
|
| 644 |
+
"start_time": "2023-05-30T08:42:45.742397Z"
|
| 645 |
+
}
|
| 646 |
+
},
|
| 647 |
+
"outputs": [],
|
| 648 |
+
"source": [
|
| 649 |
+
"# saving model\n",
|
| 650 |
+
"peft_model_id = f\"{model_name_or_path}_{peft_config.peft_type}_{peft_config.task_type}\"\n",
|
| 651 |
+
"model.save_pretrained(peft_model_id)"
|
| 652 |
+
]
|
| 653 |
+
},
|
| 654 |
+
{
|
| 655 |
+
"cell_type": "code",
|
| 656 |
+
"execution_count": 10,
|
| 657 |
+
"id": "bd20cd4c",
|
| 658 |
+
"metadata": {
|
| 659 |
+
"ExecuteTime": {
|
| 660 |
+
"end_time": "2023-05-30T08:42:47.660873Z",
|
| 661 |
+
"start_time": "2023-05-30T08:42:47.488293Z"
|
| 662 |
+
}
|
| 663 |
+
},
|
| 664 |
+
"outputs": [
|
| 665 |
+
{
|
| 666 |
+
"name": "stdout",
|
| 667 |
+
"output_type": "stream",
|
| 668 |
+
"text": [
|
| 669 |
+
"164K\tt5-large_PROMPT_TUNING_SEQ_2_SEQ_LM/adapter_model.bin\r\n"
|
| 670 |
+
]
|
| 671 |
+
}
|
| 672 |
+
],
|
| 673 |
+
"source": [
|
| 674 |
+
"ckpt = f\"{peft_model_id}/adapter_model.bin\"\n",
|
| 675 |
+
"!du -h $ckpt"
|
| 676 |
+
]
|
| 677 |
+
},
|
| 678 |
+
{
|
| 679 |
+
"cell_type": "code",
|
| 680 |
+
"execution_count": 11,
|
| 681 |
+
"id": "76c2fc29",
|
| 682 |
+
"metadata": {
|
| 683 |
+
"ExecuteTime": {
|
| 684 |
+
"end_time": "2023-05-30T08:42:56.721990Z",
|
| 685 |
+
"start_time": "2023-05-30T08:42:49.060700Z"
|
| 686 |
+
}
|
| 687 |
+
},
|
| 688 |
+
"outputs": [],
|
| 689 |
+
"source": [
|
| 690 |
+
"from peft import PeftModel, PeftConfig\n",
|
| 691 |
+
"\n",
|
| 692 |
+
"peft_model_id = f\"{model_name_or_path}_{peft_config.peft_type}_{peft_config.task_type}\"\n",
|
| 693 |
+
"\n",
|
| 694 |
+
"config = PeftConfig.from_pretrained(peft_model_id)\n",
|
| 695 |
+
"model = AutoModelForSeq2SeqLM.from_pretrained(config.base_model_name_or_path)\n",
|
| 696 |
+
"model = PeftModel.from_pretrained(model, peft_model_id)"
|
| 697 |
+
]
|
| 698 |
+
},
|
| 699 |
+
{
|
| 700 |
+
"cell_type": "code",
|
| 701 |
+
"execution_count": 12,
|
| 702 |
+
"id": "d997f1cc",
|
| 703 |
+
"metadata": {
|
| 704 |
+
"ExecuteTime": {
|
| 705 |
+
"end_time": "2023-05-30T08:42:59.600916Z",
|
| 706 |
+
"start_time": "2023-05-30T08:42:58.961468Z"
|
| 707 |
+
}
|
| 708 |
+
},
|
| 709 |
+
"outputs": [
|
| 710 |
+
{
|
| 711 |
+
"name": "stdout",
|
| 712 |
+
"output_type": "stream",
|
| 713 |
+
"text": [
|
| 714 |
+
"Danske Bank is Denmark 's largest bank with 3.5 million customers .\n",
|
| 715 |
+
"tensor([[ 3039, 1050, 1925, 19, 18001, 3, 31, 7, 2015, 2137,\n",
|
| 716 |
+
" 28, 3, 9285, 770, 722, 3, 5, 1]])\n",
|
| 717 |
+
"tensor([[ 0, 7163, 1]])\n",
|
| 718 |
+
"['neutral']\n"
|
| 719 |
+
]
|
| 720 |
+
}
|
| 721 |
+
],
|
| 722 |
+
"source": [
|
| 723 |
+
"model.eval()\n",
|
| 724 |
+
"i = 107\n",
|
| 725 |
+
"input_ids = tokenizer(dataset[\"validation\"][text_column][i], return_tensors=\"pt\").input_ids\n",
|
| 726 |
+
"print(dataset[\"validation\"][text_column][i])\n",
|
| 727 |
+
"print(input_ids)\n",
|
| 728 |
+
"\n",
|
| 729 |
+
"with torch.no_grad():\n",
|
| 730 |
+
" outputs = model.generate(input_ids=input_ids, max_new_tokens=10)\n",
|
| 731 |
+
" print(outputs)\n",
|
| 732 |
+
" print(tokenizer.batch_decode(outputs.detach().cpu().numpy(), skip_special_tokens=True))"
|
| 733 |
+
]
|
| 734 |
+
}
|
| 735 |
+
],
|
| 736 |
+
"metadata": {
|
| 737 |
+
"kernelspec": {
|
| 738 |
+
"display_name": "peft",
|
| 739 |
+
"language": "python",
|
| 740 |
+
"name": "peft"
|
| 741 |
+
},
|
| 742 |
+
"language_info": {
|
| 743 |
+
"codemirror_mode": {
|
| 744 |
+
"name": "ipython",
|
| 745 |
+
"version": 3
|
| 746 |
+
},
|
| 747 |
+
"file_extension": ".py",
|
| 748 |
+
"mimetype": "text/x-python",
|
| 749 |
+
"name": "python",
|
| 750 |
+
"nbconvert_exporter": "python",
|
| 751 |
+
"pygments_lexer": "ipython3",
|
| 752 |
+
"version": "3.9.16"
|
| 753 |
+
},
|
| 754 |
+
"toc": {
|
| 755 |
+
"base_numbering": 1,
|
| 756 |
+
"nav_menu": {},
|
| 757 |
+
"number_sections": true,
|
| 758 |
+
"sideBar": true,
|
| 759 |
+
"skip_h1_title": false,
|
| 760 |
+
"title_cell": "Table of Contents",
|
| 761 |
+
"title_sidebar": "Contents",
|
| 762 |
+
"toc_cell": false,
|
| 763 |
+
"toc_position": {},
|
| 764 |
+
"toc_section_display": true,
|
| 765 |
+
"toc_window_display": false
|
| 766 |
+
},
|
| 767 |
+
"varInspector": {
|
| 768 |
+
"cols": {
|
| 769 |
+
"lenName": 16,
|
| 770 |
+
"lenType": 16,
|
| 771 |
+
"lenVar": 40
|
| 772 |
+
},
|
| 773 |
+
"kernels_config": {
|
| 774 |
+
"python": {
|
| 775 |
+
"delete_cmd_postfix": "",
|
| 776 |
+
"delete_cmd_prefix": "del ",
|
| 777 |
+
"library": "var_list.py",
|
| 778 |
+
"varRefreshCmd": "print(var_dic_list())"
|
| 779 |
+
},
|
| 780 |
+
"r": {
|
| 781 |
+
"delete_cmd_postfix": ") ",
|
| 782 |
+
"delete_cmd_prefix": "rm(",
|
| 783 |
+
"library": "var_list.r",
|
| 784 |
+
"varRefreshCmd": "cat(var_dic_list()) "
|
| 785 |
+
}
|
| 786 |
+
},
|
| 787 |
+
"types_to_exclude": [
|
| 788 |
+
"module",
|
| 789 |
+
"function",
|
| 790 |
+
"builtin_function_or_method",
|
| 791 |
+
"instance",
|
| 792 |
+
"_Feature"
|
| 793 |
+
],
|
| 794 |
+
"window_display": false
|
| 795 |
+
},
|
| 796 |
+
"vscode": {
|
| 797 |
+
"interpreter": {
|
| 798 |
+
"hash": "aee8b7b246df8f9039afb4144a1f6fd8d2ca17a180786b69acc140d282b71a49"
|
| 799 |
+
}
|
| 800 |
+
}
|
| 801 |
+
},
|
| 802 |
+
"nbformat": 4,
|
| 803 |
+
"nbformat_minor": 5
|
| 804 |
+
}
|
peft_prompt_tuning_seq2seq_with_generate.ipynb
ADDED
|
@@ -0,0 +1,757 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"cells": [
|
| 3 |
+
{
|
| 4 |
+
"cell_type": "code",
|
| 5 |
+
"execution_count": 1,
|
| 6 |
+
"id": "5f93b7d1",
|
| 7 |
+
"metadata": {
|
| 8 |
+
"ExecuteTime": {
|
| 9 |
+
"end_time": "2023-05-30T09:49:56.334329Z",
|
| 10 |
+
"start_time": "2023-05-30T09:49:54.494916Z"
|
| 11 |
+
}
|
| 12 |
+
},
|
| 13 |
+
"outputs": [
|
| 14 |
+
{
|
| 15 |
+
"ename": "KeyboardInterrupt",
|
| 16 |
+
"evalue": "",
|
| 17 |
+
"output_type": "error",
|
| 18 |
+
"traceback": [
|
| 19 |
+
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
|
| 20 |
+
"\u001b[0;31mKeyboardInterrupt\u001b[0m Traceback (most recent call last)",
|
| 21 |
+
"Cell \u001b[0;32mIn[1], line 1\u001b[0m\n\u001b[0;32m----> 1\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01mtransformers\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m AutoModelForSeq2SeqLM, Seq2SeqTrainingArguments, Seq2SeqTrainer, GenerationConfig\n\u001b[1;32m 2\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01mpeft\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m get_peft_model, PromptTuningInit, PromptTuningConfig, TaskType\n\u001b[1;32m 3\u001b[0m \u001b[38;5;28;01mimport\u001b[39;00m \u001b[38;5;21;01mtorch\u001b[39;00m\n",
|
| 22 |
+
"File \u001b[0;32m<frozen importlib._bootstrap>:1055\u001b[0m, in \u001b[0;36m_handle_fromlist\u001b[0;34m(module, fromlist, import_, recursive)\u001b[0m\n",
|
| 23 |
+
"File \u001b[0;32m~/anaconda3/envs/peft/lib/python3.9/site-packages/transformers/utils/import_utils.py:1076\u001b[0m, in \u001b[0;36m_LazyModule.__getattr__\u001b[0;34m(self, name)\u001b[0m\n\u001b[1;32m 1074\u001b[0m value \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_get_module(name)\n\u001b[1;32m 1075\u001b[0m \u001b[38;5;28;01melif\u001b[39;00m name \u001b[38;5;129;01min\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_class_to_module\u001b[38;5;241m.\u001b[39mkeys():\n\u001b[0;32m-> 1076\u001b[0m module \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_get_module\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_class_to_module\u001b[49m\u001b[43m[\u001b[49m\u001b[43mname\u001b[49m\u001b[43m]\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 1077\u001b[0m value \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mgetattr\u001b[39m(module, name)\n\u001b[1;32m 1078\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n",
|
| 24 |
+
"File \u001b[0;32m~/anaconda3/envs/peft/lib/python3.9/site-packages/transformers/utils/import_utils.py:1086\u001b[0m, in \u001b[0;36m_LazyModule._get_module\u001b[0;34m(self, module_name)\u001b[0m\n\u001b[1;32m 1084\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21m_get_module\u001b[39m(\u001b[38;5;28mself\u001b[39m, module_name: \u001b[38;5;28mstr\u001b[39m):\n\u001b[1;32m 1085\u001b[0m \u001b[38;5;28;01mtry\u001b[39;00m:\n\u001b[0;32m-> 1086\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mimportlib\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mimport_module\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43m.\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m \u001b[49m\u001b[38;5;241;43m+\u001b[39;49m\u001b[43m \u001b[49m\u001b[43mmodule_name\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[38;5;18;43m__name__\u001b[39;49m\u001b[43m)\u001b[49m\n\u001b[1;32m 1087\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m \u001b[38;5;167;01mException\u001b[39;00m \u001b[38;5;28;01mas\u001b[39;00m e:\n\u001b[1;32m 1088\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mRuntimeError\u001b[39;00m(\n\u001b[1;32m 1089\u001b[0m \u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mFailed to import \u001b[39m\u001b[38;5;132;01m{\u001b[39;00m\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m\u001b[38;5;18m__name__\u001b[39m\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m.\u001b[39m\u001b[38;5;132;01m{\u001b[39;00mmodule_name\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m because of the following error (look up to see its\u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[1;32m 1090\u001b[0m \u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124m traceback):\u001b[39m\u001b[38;5;130;01m\\n\u001b[39;00m\u001b[38;5;132;01m{\u001b[39;00me\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m\"\u001b[39m\n\u001b[1;32m 1091\u001b[0m ) \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01me\u001b[39;00m\n",
|
| 25 |
+
"File \u001b[0;32m~/anaconda3/envs/peft/lib/python3.9/importlib/__init__.py:127\u001b[0m, in \u001b[0;36mimport_module\u001b[0;34m(name, package)\u001b[0m\n\u001b[1;32m 125\u001b[0m \u001b[38;5;28;01mbreak\u001b[39;00m\n\u001b[1;32m 126\u001b[0m level \u001b[38;5;241m+\u001b[39m\u001b[38;5;241m=\u001b[39m \u001b[38;5;241m1\u001b[39m\n\u001b[0;32m--> 127\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43m_bootstrap\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_gcd_import\u001b[49m\u001b[43m(\u001b[49m\u001b[43mname\u001b[49m\u001b[43m[\u001b[49m\u001b[43mlevel\u001b[49m\u001b[43m:\u001b[49m\u001b[43m]\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mpackage\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mlevel\u001b[49m\u001b[43m)\u001b[49m\n",
|
| 26 |
+
"File \u001b[0;32m~/anaconda3/envs/peft/lib/python3.9/site-packages/transformers/training_args_seq2seq.py:21\u001b[0m\n\u001b[1;32m 18\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01mtyping\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m Optional, Union\n\u001b[1;32m 20\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mgeneration\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mconfiguration_utils\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m GenerationConfig\n\u001b[0;32m---> 21\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mtraining_args\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m TrainingArguments\n\u001b[1;32m 22\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mutils\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m add_start_docstrings\n\u001b[1;32m 25\u001b[0m logger \u001b[38;5;241m=\u001b[39m logging\u001b[38;5;241m.\u001b[39mgetLogger(\u001b[38;5;18m__name__\u001b[39m)\n",
|
| 27 |
+
"File \u001b[0;32m~/anaconda3/envs/peft/lib/python3.9/site-packages/transformers/training_args.py:29\u001b[0m\n\u001b[1;32m 25\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01mtyping\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m Any, Dict, List, Optional, Union\n\u001b[1;32m 27\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01mpackaging\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m version\n\u001b[0;32m---> 29\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mdebug_utils\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m DebugOption\n\u001b[1;32m 30\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mtrainer_utils\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m (\n\u001b[1;32m 31\u001b[0m EvaluationStrategy,\n\u001b[1;32m 32\u001b[0m FSDPOption,\n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 36\u001b[0m ShardedDDPOption,\n\u001b[1;32m 37\u001b[0m )\n\u001b[1;32m 38\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mutils\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m (\n\u001b[1;32m 39\u001b[0m ExplicitEnum,\n\u001b[1;32m 40\u001b[0m cached_property,\n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 53\u001b[0m requires_backends,\n\u001b[1;32m 54\u001b[0m )\n",
|
| 28 |
+
"File \u001b[0;32m~/anaconda3/envs/peft/lib/python3.9/site-packages/transformers/debug_utils.py:21\u001b[0m\n\u001b[1;32m 17\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mutils\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m ExplicitEnum, is_torch_available, logging\n\u001b[1;32m 20\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m is_torch_available():\n\u001b[0;32m---> 21\u001b[0m \u001b[38;5;28;01mimport\u001b[39;00m \u001b[38;5;21;01mtorch\u001b[39;00m\n\u001b[1;32m 24\u001b[0m logger \u001b[38;5;241m=\u001b[39m logging\u001b[38;5;241m.\u001b[39mget_logger(\u001b[38;5;18m__name__\u001b[39m)\n\u001b[1;32m 27\u001b[0m \u001b[38;5;28;01mclass\u001b[39;00m \u001b[38;5;21;01mDebugUnderflowOverflow\u001b[39;00m:\n",
|
| 29 |
+
"File \u001b[0;32m~/anaconda3/envs/peft/lib/python3.9/site-packages/torch/__init__.py:1465\u001b[0m\n\u001b[1;32m 1463\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01m.\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m library\n\u001b[1;32m 1464\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m TYPE_CHECKING:\n\u001b[0;32m-> 1465\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01m.\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m _meta_registrations\n\u001b[1;32m 1467\u001b[0m \u001b[38;5;66;03m# Enable CUDA Sanitizer\u001b[39;00m\n\u001b[1;32m 1468\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mTORCH_CUDA_SANITIZER\u001b[39m\u001b[38;5;124m'\u001b[39m \u001b[38;5;129;01min\u001b[39;00m os\u001b[38;5;241m.\u001b[39menviron:\n",
|
| 30 |
+
"File \u001b[0;32m~/anaconda3/envs/peft/lib/python3.9/site-packages/torch/_meta_registrations.py:7\u001b[0m\n\u001b[1;32m 5\u001b[0m \u001b[38;5;28;01mimport\u001b[39;00m \u001b[38;5;21;01mtorch\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01m_prims_common\u001b[39;00m \u001b[38;5;28;01mas\u001b[39;00m \u001b[38;5;21;01mutils\u001b[39;00m\n\u001b[1;32m 6\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01mtorch\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m Tensor\n\u001b[0;32m----> 7\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01mtorch\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01m_decomp\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m _add_op_to_registry, global_decomposition_table, meta_table\n\u001b[1;32m 8\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01mtorch\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01m_ops\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m OpOverload\n\u001b[1;32m 9\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01mtorch\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01m_prims\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m _elementwise_meta, ELEMENTWISE_PRIM_TYPE_PROMOTION_KIND\n",
|
| 31 |
+
"File \u001b[0;32m~/anaconda3/envs/peft/lib/python3.9/site-packages/torch/_decomp/__init__.py:169\u001b[0m\n\u001b[1;32m 165\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m decompositions\n\u001b[1;32m 168\u001b[0m \u001b[38;5;66;03m# populate the table\u001b[39;00m\n\u001b[0;32m--> 169\u001b[0m \u001b[38;5;28;01mimport\u001b[39;00m \u001b[38;5;21;01mtorch\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01m_decomp\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mdecompositions\u001b[39;00m\n\u001b[1;32m 170\u001b[0m \u001b[38;5;28;01mimport\u001b[39;00m \u001b[38;5;21;01mtorch\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01m_refs\u001b[39;00m\n\u001b[1;32m 172\u001b[0m \u001b[38;5;66;03m# This list was copied from torch/_inductor/decomposition.py\u001b[39;00m\n\u001b[1;32m 173\u001b[0m \u001b[38;5;66;03m# excluding decompositions that results in prim ops\u001b[39;00m\n\u001b[1;32m 174\u001b[0m \u001b[38;5;66;03m# Resulting opset of decomposition is core aten ops\u001b[39;00m\n",
|
| 32 |
+
"File \u001b[0;32m~/anaconda3/envs/peft/lib/python3.9/site-packages/torch/_decomp/decompositions.py:10\u001b[0m\n\u001b[1;32m 7\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01mtyping\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m Callable, cast, Iterable, List, Optional, Tuple, Union\n\u001b[1;32m 9\u001b[0m \u001b[38;5;28;01mimport\u001b[39;00m \u001b[38;5;21;01mtorch\u001b[39;00m\n\u001b[0;32m---> 10\u001b[0m \u001b[38;5;28;01mimport\u001b[39;00m \u001b[38;5;21;01mtorch\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01m_prims\u001b[39;00m \u001b[38;5;28;01mas\u001b[39;00m \u001b[38;5;21;01mprims\u001b[39;00m\n\u001b[1;32m 11\u001b[0m \u001b[38;5;28;01mimport\u001b[39;00m \u001b[38;5;21;01mtorch\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01m_prims_common\u001b[39;00m \u001b[38;5;28;01mas\u001b[39;00m \u001b[38;5;21;01mutils\u001b[39;00m\n\u001b[1;32m 12\u001b[0m \u001b[38;5;28;01mimport\u001b[39;00m \u001b[38;5;21;01mtorch\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mnn\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mfunctional\u001b[39;00m \u001b[38;5;28;01mas\u001b[39;00m \u001b[38;5;21;01mF\u001b[39;00m\n",
|
| 33 |
+
"File \u001b[0;32m~/anaconda3/envs/peft/lib/python3.9/site-packages/torch/_prims/__init__.py:33\u001b[0m\n\u001b[1;32m 17\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01mtorch\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01m_prims_common\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m (\n\u001b[1;32m 18\u001b[0m check,\n\u001b[1;32m 19\u001b[0m Dim,\n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 30\u001b[0m type_to_dtype,\n\u001b[1;32m 31\u001b[0m )\n\u001b[1;32m 32\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01mtorch\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01m_prims_common\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mwrappers\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m backwards_not_supported\n\u001b[0;32m---> 33\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01mtorch\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01m_subclasses\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mfake_tensor\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m FakeTensor, FakeTensorMode\n\u001b[1;32m 34\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01mtorch\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01moverrides\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m handle_torch_function, has_torch_function\n\u001b[1;32m 35\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01mtorch\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mutils\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01m_pytree\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m tree_flatten, tree_map, tree_unflatten\n",
|
| 34 |
+
"File \u001b[0;32m~/anaconda3/envs/peft/lib/python3.9/site-packages/torch/_subclasses/__init__.py:3\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[38;5;28;01mimport\u001b[39;00m \u001b[38;5;21;01mtorch\u001b[39;00m\n\u001b[0;32m----> 3\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01mtorch\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01m_subclasses\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mfake_tensor\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m (\n\u001b[1;32m 4\u001b[0m DynamicOutputShapeException,\n\u001b[1;32m 5\u001b[0m FakeTensor,\n\u001b[1;32m 6\u001b[0m FakeTensorMode,\n\u001b[1;32m 7\u001b[0m UnsupportedFakeTensorException,\n\u001b[1;32m 8\u001b[0m )\n\u001b[1;32m 10\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01mtorch\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01m_subclasses\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mfake_utils\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m CrossRefFakeMode\n\u001b[1;32m 12\u001b[0m __all__ \u001b[38;5;241m=\u001b[39m [\n\u001b[1;32m 13\u001b[0m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mFakeTensor\u001b[39m\u001b[38;5;124m\"\u001b[39m,\n\u001b[1;32m 14\u001b[0m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mFakeTensorMode\u001b[39m\u001b[38;5;124m\"\u001b[39m,\n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 17\u001b[0m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mCrossRefFakeMode\u001b[39m\u001b[38;5;124m\"\u001b[39m,\n\u001b[1;32m 18\u001b[0m ]\n",
|
| 35 |
+
"File \u001b[0;32m~/anaconda3/envs/peft/lib/python3.9/site-packages/torch/_subclasses/fake_tensor.py:13\u001b[0m\n\u001b[1;32m 10\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01mweakref\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m ReferenceType\n\u001b[1;32m 12\u001b[0m \u001b[38;5;28;01mimport\u001b[39;00m \u001b[38;5;21;01mtorch\u001b[39;00m\n\u001b[0;32m---> 13\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01mtorch\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01m_guards\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m Source\n\u001b[1;32m 14\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01mtorch\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01m_ops\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m OpOverload\n\u001b[1;32m 15\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01mtorch\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01m_prims_common\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m (\n\u001b[1;32m 16\u001b[0m elementwise_dtypes,\n\u001b[1;32m 17\u001b[0m ELEMENTWISE_TYPE_PROMOTION_KIND,\n\u001b[1;32m 18\u001b[0m is_float_dtype,\n\u001b[1;32m 19\u001b[0m is_integer_dtype,\n\u001b[1;32m 20\u001b[0m )\n",
|
| 36 |
+
"File \u001b[0;32m~/anaconda3/envs/peft/lib/python3.9/site-packages/torch/_guards.py:14\u001b[0m\n\u001b[1;32m 11\u001b[0m \u001b[38;5;66;03m# TODO(voz): Stolen pattern, not sure why this is the case,\u001b[39;00m\n\u001b[1;32m 12\u001b[0m \u001b[38;5;66;03m# but mypy complains.\u001b[39;00m\n\u001b[1;32m 13\u001b[0m \u001b[38;5;28;01mtry\u001b[39;00m:\n\u001b[0;32m---> 14\u001b[0m \u001b[38;5;28;01mimport\u001b[39;00m \u001b[38;5;21;01msympy\u001b[39;00m \u001b[38;5;66;03m# type: ignore[import]\u001b[39;00m\n\u001b[1;32m 15\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m \u001b[38;5;167;01mImportError\u001b[39;00m:\n\u001b[1;32m 16\u001b[0m log\u001b[38;5;241m.\u001b[39mwarning(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mNo sympy found\u001b[39m\u001b[38;5;124m\"\u001b[39m)\n",
|
| 37 |
+
"File \u001b[0;32m~/anaconda3/envs/peft/lib/python3.9/site-packages/sympy/__init__.py:74\u001b[0m\n\u001b[1;32m 67\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mlogic\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m (to_cnf, to_dnf, to_nnf, And, Or, Not, Xor, Nand, Nor,\n\u001b[1;32m 68\u001b[0m Implies, Equivalent, ITE, POSform, SOPform, simplify_logic, bool_map,\n\u001b[1;32m 69\u001b[0m true, false, satisfiable)\n\u001b[1;32m 71\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01massumptions\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m (AppliedPredicate, Predicate, AssumptionsContext,\n\u001b[1;32m 72\u001b[0m assuming, Q, ask, register_handler, remove_handler, refine)\n\u001b[0;32m---> 74\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mpolys\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m (Poly, PurePoly, poly_from_expr, parallel_poly_from_expr,\n\u001b[1;32m 75\u001b[0m degree, total_degree, degree_list, LC, LM, LT, pdiv, prem, pquo,\n\u001b[1;32m 76\u001b[0m pexquo, div, rem, quo, exquo, half_gcdex, gcdex, invert,\n\u001b[1;32m 77\u001b[0m subresultants, resultant, discriminant, cofactors, gcd_list, gcd,\n\u001b[1;32m 78\u001b[0m lcm_list, lcm, terms_gcd, trunc, monic, content, primitive, compose,\n\u001b[1;32m 79\u001b[0m decompose, sturm, gff_list, gff, sqf_norm, sqf_part, sqf_list, sqf,\n\u001b[1;32m 80\u001b[0m factor_list, factor, intervals, refine_root, count_roots, real_roots,\n\u001b[1;32m 81\u001b[0m nroots, ground_roots, nth_power_roots_poly, cancel, reduced, groebner,\n\u001b[1;32m 82\u001b[0m is_zero_dimensional, GroebnerBasis, poly, symmetrize, horner,\n\u001b[1;32m 83\u001b[0m interpolate, rational_interpolate, viete, together,\n\u001b[1;32m 84\u001b[0m BasePolynomialError, ExactQuotientFailed, PolynomialDivisionFailed,\n\u001b[1;32m 85\u001b[0m OperationNotSupported, HeuristicGCDFailed, HomomorphismFailed,\n\u001b[1;32m 86\u001b[0m IsomorphismFailed, ExtraneousFactors, EvaluationFailed,\n\u001b[1;32m 87\u001b[0m RefinementFailed, CoercionFailed, NotInvertible, NotReversible,\n\u001b[1;32m 88\u001b[0m NotAlgebraic, DomainError, PolynomialError, UnificationFailed,\n\u001b[1;32m 89\u001b[0m GeneratorsError, GeneratorsNeeded, ComputationFailed,\n\u001b[1;32m 90\u001b[0m UnivariatePolynomialError, MultivariatePolynomialError,\n\u001b[1;32m 91\u001b[0m PolificationFailed, OptionError, FlagError, minpoly,\n\u001b[1;32m 92\u001b[0m minimal_polynomial, primitive_element, field_isomorphism,\n\u001b[1;32m 93\u001b[0m to_number_field, isolate, round_two, prime_decomp, prime_valuation,\n\u001b[1;32m 94\u001b[0m galois_group, itermonomials, Monomial, lex, grlex,\n\u001b[1;32m 95\u001b[0m grevlex, ilex, igrlex, igrevlex, CRootOf, rootof, RootOf,\n\u001b[1;32m 96\u001b[0m ComplexRootOf, RootSum, roots, Domain, FiniteField, IntegerRing,\n\u001b[1;32m 97\u001b[0m RationalField, RealField, ComplexField, PythonFiniteField,\n\u001b[1;32m 98\u001b[0m GMPYFiniteField, PythonIntegerRing, GMPYIntegerRing, PythonRational,\n\u001b[1;32m 99\u001b[0m GMPYRationalField, AlgebraicField, PolynomialRing, FractionField,\n\u001b[1;32m 100\u001b[0m ExpressionDomain, FF_python, FF_gmpy, ZZ_python, ZZ_gmpy, QQ_python,\n\u001b[1;32m 101\u001b[0m QQ_gmpy, GF, FF, ZZ, QQ, ZZ_I, QQ_I, RR, CC, EX, EXRAW,\n\u001b[1;32m 102\u001b[0m construct_domain, swinnerton_dyer_poly, cyclotomic_poly,\n\u001b[1;32m 103\u001b[0m symmetric_poly, random_poly, interpolating_poly, jacobi_poly,\n\u001b[1;32m 104\u001b[0m chebyshevt_poly, chebyshevu_poly, hermite_poly, hermite_prob_poly,\n\u001b[1;32m 105\u001b[0m legendre_poly, laguerre_poly, apart, apart_list, assemble_partfrac_list,\n\u001b[1;32m 106\u001b[0m Options, ring, xring, vring, sring, field, xfield, vfield, sfield)\n\u001b[1;32m 108\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mseries\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m (Order, O, limit, Limit, gruntz, series, approximants,\n\u001b[1;32m 109\u001b[0m residue, EmptySequence, SeqPer, SeqFormula, sequence, SeqAdd, SeqMul,\n\u001b[1;32m 110\u001b[0m fourier_series, fps, difference_delta, limit_seq)\n\u001b[1;32m 112\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mfunctions\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m (factorial, factorial2, rf, ff, binomial,\n\u001b[1;32m 113\u001b[0m RisingFactorial, FallingFactorial, subfactorial, carmichael,\n\u001b[1;32m 114\u001b[0m fibonacci, lucas, motzkin, tribonacci, harmonic, bernoulli, bell, euler,\n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 133\u001b[0m Znm, elliptic_k, elliptic_f, elliptic_e, elliptic_pi, beta, mathieus,\n\u001b[1;32m 134\u001b[0m mathieuc, mathieusprime, mathieucprime, riemann_xi, betainc, betainc_regularized)\n",
|
| 38 |
+
"File \u001b[0;32m~/anaconda3/envs/peft/lib/python3.9/site-packages/sympy/polys/__init__.py:78\u001b[0m\n\u001b[1;32m 3\u001b[0m __all__ \u001b[38;5;241m=\u001b[39m [\n\u001b[1;32m 4\u001b[0m \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mPoly\u001b[39m\u001b[38;5;124m'\u001b[39m, \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mPurePoly\u001b[39m\u001b[38;5;124m'\u001b[39m, \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mpoly_from_expr\u001b[39m\u001b[38;5;124m'\u001b[39m, \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mparallel_poly_from_expr\u001b[39m\u001b[38;5;124m'\u001b[39m, \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mdegree\u001b[39m\u001b[38;5;124m'\u001b[39m,\n\u001b[1;32m 5\u001b[0m \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mtotal_degree\u001b[39m\u001b[38;5;124m'\u001b[39m, \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mdegree_list\u001b[39m\u001b[38;5;124m'\u001b[39m, \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mLC\u001b[39m\u001b[38;5;124m'\u001b[39m, \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mLM\u001b[39m\u001b[38;5;124m'\u001b[39m, \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mLT\u001b[39m\u001b[38;5;124m'\u001b[39m, \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mpdiv\u001b[39m\u001b[38;5;124m'\u001b[39m, \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mprem\u001b[39m\u001b[38;5;124m'\u001b[39m, \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mpquo\u001b[39m\u001b[38;5;124m'\u001b[39m,\n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 65\u001b[0m \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mfield\u001b[39m\u001b[38;5;124m'\u001b[39m, \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mxfield\u001b[39m\u001b[38;5;124m'\u001b[39m, \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mvfield\u001b[39m\u001b[38;5;124m'\u001b[39m, \u001b[38;5;124m'\u001b[39m\u001b[38;5;124msfield\u001b[39m\u001b[38;5;124m'\u001b[39m\n\u001b[1;32m 66\u001b[0m ]\n\u001b[1;32m 68\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mpolytools\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m (Poly, PurePoly, poly_from_expr,\n\u001b[1;32m 69\u001b[0m parallel_poly_from_expr, degree, total_degree, degree_list, LC, LM,\n\u001b[1;32m 70\u001b[0m LT, pdiv, prem, pquo, pexquo, div, rem, quo, exquo, half_gcdex, gcdex,\n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 75\u001b[0m count_roots, real_roots, nroots, ground_roots, nth_power_roots_poly,\n\u001b[1;32m 76\u001b[0m cancel, reduced, groebner, is_zero_dimensional, GroebnerBasis, poly)\n\u001b[0;32m---> 78\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mpolyfuncs\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m (symmetrize, horner, interpolate,\n\u001b[1;32m 79\u001b[0m rational_interpolate, viete)\n\u001b[1;32m 81\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mrationaltools\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m together\n\u001b[1;32m 83\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mpolyerrors\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m (BasePolynomialError, ExactQuotientFailed,\n\u001b[1;32m 84\u001b[0m PolynomialDivisionFailed, OperationNotSupported, HeuristicGCDFailed,\n\u001b[1;32m 85\u001b[0m HomomorphismFailed, IsomorphismFailed, ExtraneousFactors,\n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 90\u001b[0m MultivariatePolynomialError, PolificationFailed, OptionError,\n\u001b[1;32m 91\u001b[0m FlagError)\n",
|
| 39 |
+
"File \u001b[0;32m~/anaconda3/envs/peft/lib/python3.9/site-packages/sympy/polys/polyfuncs.py:10\u001b[0m\n\u001b[1;32m 8\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01msympy\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mpolys\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mpolyoptions\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m allowed_flags, build_options\n\u001b[1;32m 9\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01msympy\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mpolys\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mpolytools\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m poly_from_expr, Poly\n\u001b[0;32m---> 10\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01msympy\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mpolys\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mspecialpolys\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m (\n\u001b[1;32m 11\u001b[0m symmetric_poly, interpolating_poly)\n\u001b[1;32m 12\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01msympy\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mpolys\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mrings\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m sring\n\u001b[1;32m 13\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01msympy\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mutilities\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m numbered_symbols, take, public\n",
|
| 40 |
+
"File \u001b[0;32m~/anaconda3/envs/peft/lib/python3.9/site-packages/sympy/polys/specialpolys.py:298\u001b[0m\n\u001b[1;32m 294\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m dmp_mul(f, h, n, K), dmp_mul(g, h, n, K), h\n\u001b[1;32m 296\u001b[0m \u001b[38;5;66;03m# A few useful polynomials from Wang's paper ('78).\u001b[39;00m\n\u001b[0;32m--> 298\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01msympy\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mpolys\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mrings\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m ring\n\u001b[1;32m 300\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21m_f_0\u001b[39m():\n\u001b[1;32m 301\u001b[0m R, x, y, z \u001b[38;5;241m=\u001b[39m ring(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mx,y,z\u001b[39m\u001b[38;5;124m\"\u001b[39m, ZZ)\n",
|
| 41 |
+
"File \u001b[0;32m~/anaconda3/envs/peft/lib/python3.9/site-packages/sympy/polys/rings.py:30\u001b[0m\n\u001b[1;32m 26\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01msympy\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mpolys\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mpolyoptions\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m (Domain \u001b[38;5;28;01mas\u001b[39;00m DomainOpt,\n\u001b[1;32m 27\u001b[0m Order \u001b[38;5;28;01mas\u001b[39;00m OrderOpt, build_options)\n\u001b[1;32m 28\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01msympy\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mpolys\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mpolyutils\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m (expr_from_dict, _dict_reorder,\n\u001b[1;32m 29\u001b[0m _parallel_dict_from_expr)\n\u001b[0;32m---> 30\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01msympy\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mprinting\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mdefaults\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m DefaultPrinting\n\u001b[1;32m 31\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01msympy\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mutilities\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m public, subsets\n\u001b[1;32m 32\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01msympy\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mutilities\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01miterables\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m is_sequence\n",
|
| 42 |
+
"File \u001b[0;32m~/anaconda3/envs/peft/lib/python3.9/site-packages/sympy/printing/__init__.py:5\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[38;5;124;03m\"\"\"Printing subsystem\"\"\"\u001b[39;00m\n\u001b[1;32m 3\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mpretty\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m pager_print, pretty, pretty_print, pprint, pprint_use_unicode, pprint_try_use_unicode\n\u001b[0;32m----> 5\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mlatex\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m latex, print_latex, multiline_latex\n\u001b[1;32m 7\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mmathml\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m mathml, print_mathml\n\u001b[1;32m 9\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mpython\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m python, print_python\n",
|
| 43 |
+
"File \u001b[0;32m~/anaconda3/envs/peft/lib/python3.9/site-packages/sympy/printing/latex.py:18\u001b[0m\n\u001b[1;32m 16\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01msympy\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mcore\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01msympify\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m SympifyError\n\u001b[1;32m 17\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01msympy\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mlogic\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mboolalg\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m true, BooleanTrue, BooleanFalse\n\u001b[0;32m---> 18\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01msympy\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mtensor\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01marray\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m NDimArray\n\u001b[1;32m 20\u001b[0m \u001b[38;5;66;03m# sympy.printing imports\u001b[39;00m\n\u001b[1;32m 21\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01msympy\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mprinting\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mprecedence\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m precedence_traditional\n",
|
| 44 |
+
"File \u001b[0;32m~/anaconda3/envs/peft/lib/python3.9/site-packages/sympy/tensor/__init__.py:4\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[38;5;124;03m\"\"\"A module to manipulate symbolic objects with indices including tensors\u001b[39;00m\n\u001b[1;32m 2\u001b[0m \n\u001b[1;32m 3\u001b[0m \u001b[38;5;124;03m\"\"\"\u001b[39;00m\n\u001b[0;32m----> 4\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mindexed\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m IndexedBase, Idx, Indexed\n\u001b[1;32m 5\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mindex_methods\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m get_contraction_structure, get_indices\n\u001b[1;32m 6\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mfunctions\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m shape\n",
|
| 45 |
+
"File \u001b[0;32m~/anaconda3/envs/peft/lib/python3.9/site-packages/sympy/tensor/indexed.py:114\u001b[0m\n\u001b[1;32m 112\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01msympy\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mcore\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mlogic\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m fuzzy_bool, fuzzy_not\n\u001b[1;32m 113\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01msympy\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mcore\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01msympify\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m _sympify\n\u001b[0;32m--> 114\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01msympy\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mfunctions\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mspecial\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mtensor_functions\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m KroneckerDelta\n\u001b[1;32m 115\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01msympy\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mmultipledispatch\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m dispatch\n\u001b[1;32m 116\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01msympy\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mutilities\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01miterables\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m is_sequence, NotIterable\n",
|
| 46 |
+
"File \u001b[0;32m~/anaconda3/envs/peft/lib/python3.9/site-packages/sympy/functions/__init__.py:21\u001b[0m\n\u001b[1;32m 17\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01msympy\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mfunctions\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01melementary\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mtrigonometric\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m (sin, cos, tan,\n\u001b[1;32m 18\u001b[0m sec, csc, cot, sinc, asin, acos, atan, asec, acsc, acot, atan2)\n\u001b[1;32m 19\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01msympy\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mfunctions\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01melementary\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mexponential\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m (exp_polar, exp, log,\n\u001b[1;32m 20\u001b[0m LambertW)\n\u001b[0;32m---> 21\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01msympy\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mfunctions\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01melementary\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mhyperbolic\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m (sinh, cosh, tanh, coth,\n\u001b[1;32m 22\u001b[0m sech, csch, asinh, acosh, atanh, acoth, asech, acsch)\n\u001b[1;32m 23\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01msympy\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mfunctions\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01melementary\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mintegers\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m floor, ceiling, frac\n\u001b[1;32m 24\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01msympy\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mfunctions\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01melementary\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mpiecewise\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m (Piecewise, piecewise_fold,\n\u001b[1;32m 25\u001b[0m piecewise_exclusive)\n",
|
| 47 |
+
"File \u001b[0;32m<frozen importlib._bootstrap>:1007\u001b[0m, in \u001b[0;36m_find_and_load\u001b[0;34m(name, import_)\u001b[0m\n",
|
| 48 |
+
"File \u001b[0;32m<frozen importlib._bootstrap>:986\u001b[0m, in \u001b[0;36m_find_and_load_unlocked\u001b[0;34m(name, import_)\u001b[0m\n",
|
| 49 |
+
"File \u001b[0;32m<frozen importlib._bootstrap>:680\u001b[0m, in \u001b[0;36m_load_unlocked\u001b[0;34m(spec)\u001b[0m\n",
|
| 50 |
+
"File \u001b[0;32m<frozen importlib._bootstrap_external>:846\u001b[0m, in \u001b[0;36mexec_module\u001b[0;34m(self, module)\u001b[0m\n",
|
| 51 |
+
"File \u001b[0;32m<frozen importlib._bootstrap_external>:978\u001b[0m, in \u001b[0;36mget_code\u001b[0;34m(self, fullname)\u001b[0m\n",
|
| 52 |
+
"File \u001b[0;32m<frozen importlib._bootstrap_external>:647\u001b[0m, in \u001b[0;36m_compile_bytecode\u001b[0;34m(data, name, bytecode_path, source_path)\u001b[0m\n",
|
| 53 |
+
"\u001b[0;31mKeyboardInterrupt\u001b[0m: "
|
| 54 |
+
]
|
| 55 |
+
}
|
| 56 |
+
],
|
| 57 |
+
"source": [
|
| 58 |
+
"import os\n",
|
| 59 |
+
"\n",
|
| 60 |
+
"import torch\n",
|
| 61 |
+
"from transformers import (\n",
|
| 62 |
+
" AutoTokenizer,\n",
|
| 63 |
+
" default_data_collator,\n",
|
| 64 |
+
" AutoModelForSeq2SeqLM,\n",
|
| 65 |
+
" Seq2SeqTrainingArguments,\n",
|
| 66 |
+
" Seq2SeqTrainer,\n",
|
| 67 |
+
" GenerationConfig,\n",
|
| 68 |
+
")\n",
|
| 69 |
+
"from peft import get_peft_model, PromptTuningInit, PromptTuningConfig, TaskType\n",
|
| 70 |
+
"from datasets import load_dataset\n",
|
| 71 |
+
"\n",
|
| 72 |
+
"os.environ[\"CUDA_VISIBLE_DEVICES\"] = \"0\"\n",
|
| 73 |
+
"os.environ[\"TOKENIZERS_PARALLELISM\"] = \"false\"\n",
|
| 74 |
+
"\n",
|
| 75 |
+
"device = \"cuda\"\n",
|
| 76 |
+
"model_name_or_path = \"t5-large\"\n",
|
| 77 |
+
"tokenizer_name_or_path = \"t5-large\"\n",
|
| 78 |
+
"\n",
|
| 79 |
+
"checkpoint_name = \"financial_sentiment_analysis_prefix_tuning_v1.pt\"\n",
|
| 80 |
+
"text_column = \"sentence\"\n",
|
| 81 |
+
"label_column = \"text_label\"\n",
|
| 82 |
+
"max_length = 8\n",
|
| 83 |
+
"lr = 1e0\n",
|
| 84 |
+
"num_epochs = 5\n",
|
| 85 |
+
"batch_size = 8"
|
| 86 |
+
]
|
| 87 |
+
},
|
| 88 |
+
{
|
| 89 |
+
"cell_type": "code",
|
| 90 |
+
"execution_count": 2,
|
| 91 |
+
"id": "8d0850ac",
|
| 92 |
+
"metadata": {
|
| 93 |
+
"ExecuteTime": {
|
| 94 |
+
"end_time": "2023-05-30T09:50:04.808527Z",
|
| 95 |
+
"start_time": "2023-05-30T09:49:56.953075Z"
|
| 96 |
+
}
|
| 97 |
+
},
|
| 98 |
+
"outputs": [
|
| 99 |
+
{
|
| 100 |
+
"name": "stdout",
|
| 101 |
+
"output_type": "stream",
|
| 102 |
+
"text": [
|
| 103 |
+
"trainable params: 40960 || all params: 737709056 || trainable%: 0.005552324411210698\n"
|
| 104 |
+
]
|
| 105 |
+
},
|
| 106 |
+
{
|
| 107 |
+
"data": {
|
| 108 |
+
"text/plain": [
|
| 109 |
+
"PeftModelForSeq2SeqLM(\n",
|
| 110 |
+
" (base_model): T5ForConditionalGeneration(\n",
|
| 111 |
+
" (shared): Embedding(32128, 1024)\n",
|
| 112 |
+
" (encoder): T5Stack(\n",
|
| 113 |
+
" (embed_tokens): Embedding(32128, 1024)\n",
|
| 114 |
+
" (block): ModuleList(\n",
|
| 115 |
+
" (0): T5Block(\n",
|
| 116 |
+
" (layer): ModuleList(\n",
|
| 117 |
+
" (0): T5LayerSelfAttention(\n",
|
| 118 |
+
" (SelfAttention): T5Attention(\n",
|
| 119 |
+
" (q): Linear(in_features=1024, out_features=1024, bias=False)\n",
|
| 120 |
+
" (k): Linear(in_features=1024, out_features=1024, bias=False)\n",
|
| 121 |
+
" (v): Linear(in_features=1024, out_features=1024, bias=False)\n",
|
| 122 |
+
" (o): Linear(in_features=1024, out_features=1024, bias=False)\n",
|
| 123 |
+
" (relative_attention_bias): Embedding(32, 16)\n",
|
| 124 |
+
" )\n",
|
| 125 |
+
" (layer_norm): T5LayerNorm()\n",
|
| 126 |
+
" (dropout): Dropout(p=0.1, inplace=False)\n",
|
| 127 |
+
" )\n",
|
| 128 |
+
" (1): T5LayerFF(\n",
|
| 129 |
+
" (DenseReluDense): T5DenseActDense(\n",
|
| 130 |
+
" (wi): Linear(in_features=1024, out_features=4096, bias=False)\n",
|
| 131 |
+
" (wo): Linear(in_features=4096, out_features=1024, bias=False)\n",
|
| 132 |
+
" (dropout): Dropout(p=0.1, inplace=False)\n",
|
| 133 |
+
" (act): ReLU()\n",
|
| 134 |
+
" )\n",
|
| 135 |
+
" (layer_norm): T5LayerNorm()\n",
|
| 136 |
+
" (dropout): Dropout(p=0.1, inplace=False)\n",
|
| 137 |
+
" )\n",
|
| 138 |
+
" )\n",
|
| 139 |
+
" )\n",
|
| 140 |
+
" (1-23): 23 x T5Block(\n",
|
| 141 |
+
" (layer): ModuleList(\n",
|
| 142 |
+
" (0): T5LayerSelfAttention(\n",
|
| 143 |
+
" (SelfAttention): T5Attention(\n",
|
| 144 |
+
" (q): Linear(in_features=1024, out_features=1024, bias=False)\n",
|
| 145 |
+
" (k): Linear(in_features=1024, out_features=1024, bias=False)\n",
|
| 146 |
+
" (v): Linear(in_features=1024, out_features=1024, bias=False)\n",
|
| 147 |
+
" (o): Linear(in_features=1024, out_features=1024, bias=False)\n",
|
| 148 |
+
" )\n",
|
| 149 |
+
" (layer_norm): T5LayerNorm()\n",
|
| 150 |
+
" (dropout): Dropout(p=0.1, inplace=False)\n",
|
| 151 |
+
" )\n",
|
| 152 |
+
" (1): T5LayerFF(\n",
|
| 153 |
+
" (DenseReluDense): T5DenseActDense(\n",
|
| 154 |
+
" (wi): Linear(in_features=1024, out_features=4096, bias=False)\n",
|
| 155 |
+
" (wo): Linear(in_features=4096, out_features=1024, bias=False)\n",
|
| 156 |
+
" (dropout): Dropout(p=0.1, inplace=False)\n",
|
| 157 |
+
" (act): ReLU()\n",
|
| 158 |
+
" )\n",
|
| 159 |
+
" (layer_norm): T5LayerNorm()\n",
|
| 160 |
+
" (dropout): Dropout(p=0.1, inplace=False)\n",
|
| 161 |
+
" )\n",
|
| 162 |
+
" )\n",
|
| 163 |
+
" )\n",
|
| 164 |
+
" )\n",
|
| 165 |
+
" (final_layer_norm): T5LayerNorm()\n",
|
| 166 |
+
" (dropout): Dropout(p=0.1, inplace=False)\n",
|
| 167 |
+
" )\n",
|
| 168 |
+
" (decoder): T5Stack(\n",
|
| 169 |
+
" (embed_tokens): Embedding(32128, 1024)\n",
|
| 170 |
+
" (block): ModuleList(\n",
|
| 171 |
+
" (0): T5Block(\n",
|
| 172 |
+
" (layer): ModuleList(\n",
|
| 173 |
+
" (0): T5LayerSelfAttention(\n",
|
| 174 |
+
" (SelfAttention): T5Attention(\n",
|
| 175 |
+
" (q): Linear(in_features=1024, out_features=1024, bias=False)\n",
|
| 176 |
+
" (k): Linear(in_features=1024, out_features=1024, bias=False)\n",
|
| 177 |
+
" (v): Linear(in_features=1024, out_features=1024, bias=False)\n",
|
| 178 |
+
" (o): Linear(in_features=1024, out_features=1024, bias=False)\n",
|
| 179 |
+
" (relative_attention_bias): Embedding(32, 16)\n",
|
| 180 |
+
" )\n",
|
| 181 |
+
" (layer_norm): T5LayerNorm()\n",
|
| 182 |
+
" (dropout): Dropout(p=0.1, inplace=False)\n",
|
| 183 |
+
" )\n",
|
| 184 |
+
" (1): T5LayerCrossAttention(\n",
|
| 185 |
+
" (EncDecAttention): T5Attention(\n",
|
| 186 |
+
" (q): Linear(in_features=1024, out_features=1024, bias=False)\n",
|
| 187 |
+
" (k): Linear(in_features=1024, out_features=1024, bias=False)\n",
|
| 188 |
+
" (v): Linear(in_features=1024, out_features=1024, bias=False)\n",
|
| 189 |
+
" (o): Linear(in_features=1024, out_features=1024, bias=False)\n",
|
| 190 |
+
" )\n",
|
| 191 |
+
" (layer_norm): T5LayerNorm()\n",
|
| 192 |
+
" (dropout): Dropout(p=0.1, inplace=False)\n",
|
| 193 |
+
" )\n",
|
| 194 |
+
" (2): T5LayerFF(\n",
|
| 195 |
+
" (DenseReluDense): T5DenseActDense(\n",
|
| 196 |
+
" (wi): Linear(in_features=1024, out_features=4096, bias=False)\n",
|
| 197 |
+
" (wo): Linear(in_features=4096, out_features=1024, bias=False)\n",
|
| 198 |
+
" (dropout): Dropout(p=0.1, inplace=False)\n",
|
| 199 |
+
" (act): ReLU()\n",
|
| 200 |
+
" )\n",
|
| 201 |
+
" (layer_norm): T5LayerNorm()\n",
|
| 202 |
+
" (dropout): Dropout(p=0.1, inplace=False)\n",
|
| 203 |
+
" )\n",
|
| 204 |
+
" )\n",
|
| 205 |
+
" )\n",
|
| 206 |
+
" (1-23): 23 x T5Block(\n",
|
| 207 |
+
" (layer): ModuleList(\n",
|
| 208 |
+
" (0): T5LayerSelfAttention(\n",
|
| 209 |
+
" (SelfAttention): T5Attention(\n",
|
| 210 |
+
" (q): Linear(in_features=1024, out_features=1024, bias=False)\n",
|
| 211 |
+
" (k): Linear(in_features=1024, out_features=1024, bias=False)\n",
|
| 212 |
+
" (v): Linear(in_features=1024, out_features=1024, bias=False)\n",
|
| 213 |
+
" (o): Linear(in_features=1024, out_features=1024, bias=False)\n",
|
| 214 |
+
" )\n",
|
| 215 |
+
" (layer_norm): T5LayerNorm()\n",
|
| 216 |
+
" (dropout): Dropout(p=0.1, inplace=False)\n",
|
| 217 |
+
" )\n",
|
| 218 |
+
" (1): T5LayerCrossAttention(\n",
|
| 219 |
+
" (EncDecAttention): T5Attention(\n",
|
| 220 |
+
" (q): Linear(in_features=1024, out_features=1024, bias=False)\n",
|
| 221 |
+
" (k): Linear(in_features=1024, out_features=1024, bias=False)\n",
|
| 222 |
+
" (v): Linear(in_features=1024, out_features=1024, bias=False)\n",
|
| 223 |
+
" (o): Linear(in_features=1024, out_features=1024, bias=False)\n",
|
| 224 |
+
" )\n",
|
| 225 |
+
" (layer_norm): T5LayerNorm()\n",
|
| 226 |
+
" (dropout): Dropout(p=0.1, inplace=False)\n",
|
| 227 |
+
" )\n",
|
| 228 |
+
" (2): T5LayerFF(\n",
|
| 229 |
+
" (DenseReluDense): T5DenseActDense(\n",
|
| 230 |
+
" (wi): Linear(in_features=1024, out_features=4096, bias=False)\n",
|
| 231 |
+
" (wo): Linear(in_features=4096, out_features=1024, bias=False)\n",
|
| 232 |
+
" (dropout): Dropout(p=0.1, inplace=False)\n",
|
| 233 |
+
" (act): ReLU()\n",
|
| 234 |
+
" )\n",
|
| 235 |
+
" (layer_norm): T5LayerNorm()\n",
|
| 236 |
+
" (dropout): Dropout(p=0.1, inplace=False)\n",
|
| 237 |
+
" )\n",
|
| 238 |
+
" )\n",
|
| 239 |
+
" )\n",
|
| 240 |
+
" )\n",
|
| 241 |
+
" (final_layer_norm): T5LayerNorm()\n",
|
| 242 |
+
" (dropout): Dropout(p=0.1, inplace=False)\n",
|
| 243 |
+
" )\n",
|
| 244 |
+
" (lm_head): Linear(in_features=1024, out_features=32128, bias=False)\n",
|
| 245 |
+
" )\n",
|
| 246 |
+
" (prompt_encoder): ModuleDict(\n",
|
| 247 |
+
" (default): PromptEmbedding(\n",
|
| 248 |
+
" (embedding): Embedding(40, 1024)\n",
|
| 249 |
+
" )\n",
|
| 250 |
+
" )\n",
|
| 251 |
+
" (word_embeddings): Embedding(32128, 1024)\n",
|
| 252 |
+
")"
|
| 253 |
+
]
|
| 254 |
+
},
|
| 255 |
+
"execution_count": 2,
|
| 256 |
+
"metadata": {},
|
| 257 |
+
"output_type": "execute_result"
|
| 258 |
+
}
|
| 259 |
+
],
|
| 260 |
+
"source": [
|
| 261 |
+
"# creating model\n",
|
| 262 |
+
"peft_config = peft_config = PromptTuningConfig(\n",
|
| 263 |
+
" task_type=TaskType.SEQ_2_SEQ_LM,\n",
|
| 264 |
+
" prompt_tuning_init=PromptTuningInit.TEXT,\n",
|
| 265 |
+
" num_virtual_tokens=20,\n",
|
| 266 |
+
" prompt_tuning_init_text=\"What is the sentiment of this article?\\n\",\n",
|
| 267 |
+
" inference_mode=False,\n",
|
| 268 |
+
" tokenizer_name_or_path=model_name_or_path,\n",
|
| 269 |
+
")\n",
|
| 270 |
+
"\n",
|
| 271 |
+
"model = AutoModelForSeq2SeqLM.from_pretrained(model_name_or_path)\n",
|
| 272 |
+
"model = get_peft_model(model, peft_config)\n",
|
| 273 |
+
"model.print_trainable_parameters()\n",
|
| 274 |
+
"model"
|
| 275 |
+
]
|
| 276 |
+
},
|
| 277 |
+
{
|
| 278 |
+
"cell_type": "code",
|
| 279 |
+
"execution_count": 3,
|
| 280 |
+
"id": "4ee2babf",
|
| 281 |
+
"metadata": {
|
| 282 |
+
"ExecuteTime": {
|
| 283 |
+
"end_time": "2023-05-30T09:50:09.224782Z",
|
| 284 |
+
"start_time": "2023-05-30T09:50:08.172611Z"
|
| 285 |
+
}
|
| 286 |
+
},
|
| 287 |
+
"outputs": [
|
| 288 |
+
{
|
| 289 |
+
"name": "stderr",
|
| 290 |
+
"output_type": "stream",
|
| 291 |
+
"text": [
|
| 292 |
+
"Found cached dataset financial_phrasebank (/data/proxem/huggingface/datasets/financial_phrasebank/sentences_allagree/1.0.0/550bde12e6c30e2674da973a55f57edde5181d53f5a5a34c1531c53f93b7e141)\n"
|
| 293 |
+
]
|
| 294 |
+
},
|
| 295 |
+
{
|
| 296 |
+
"data": {
|
| 297 |
+
"application/vnd.jupyter.widget-view+json": {
|
| 298 |
+
"model_id": "d3a799c64a2c43258dc6166c90e2e49f",
|
| 299 |
+
"version_major": 2,
|
| 300 |
+
"version_minor": 0
|
| 301 |
+
},
|
| 302 |
+
"text/plain": [
|
| 303 |
+
" 0%| | 0/1 [00:00<?, ?it/s]"
|
| 304 |
+
]
|
| 305 |
+
},
|
| 306 |
+
"metadata": {},
|
| 307 |
+
"output_type": "display_data"
|
| 308 |
+
},
|
| 309 |
+
{
|
| 310 |
+
"data": {
|
| 311 |
+
"application/vnd.jupyter.widget-view+json": {
|
| 312 |
+
"model_id": "",
|
| 313 |
+
"version_major": 2,
|
| 314 |
+
"version_minor": 0
|
| 315 |
+
},
|
| 316 |
+
"text/plain": [
|
| 317 |
+
"Map: 0%| | 0/2037 [00:00<?, ? examples/s]"
|
| 318 |
+
]
|
| 319 |
+
},
|
| 320 |
+
"metadata": {},
|
| 321 |
+
"output_type": "display_data"
|
| 322 |
+
},
|
| 323 |
+
{
|
| 324 |
+
"data": {
|
| 325 |
+
"application/vnd.jupyter.widget-view+json": {
|
| 326 |
+
"model_id": "",
|
| 327 |
+
"version_major": 2,
|
| 328 |
+
"version_minor": 0
|
| 329 |
+
},
|
| 330 |
+
"text/plain": [
|
| 331 |
+
"Map: 0%| | 0/227 [00:00<?, ? examples/s]"
|
| 332 |
+
]
|
| 333 |
+
},
|
| 334 |
+
"metadata": {},
|
| 335 |
+
"output_type": "display_data"
|
| 336 |
+
},
|
| 337 |
+
{
|
| 338 |
+
"data": {
|
| 339 |
+
"text/plain": [
|
| 340 |
+
"{'sentence': 'The price of the 10,000 kroon par value bonds was 9663,51 kroons in the primary issue .',\n",
|
| 341 |
+
" 'label': 1,\n",
|
| 342 |
+
" 'text_label': 'neutral'}"
|
| 343 |
+
]
|
| 344 |
+
},
|
| 345 |
+
"execution_count": 3,
|
| 346 |
+
"metadata": {},
|
| 347 |
+
"output_type": "execute_result"
|
| 348 |
+
}
|
| 349 |
+
],
|
| 350 |
+
"source": [
|
| 351 |
+
"# loading dataset\n",
|
| 352 |
+
"dataset = load_dataset(\"financial_phrasebank\", \"sentences_allagree\")\n",
|
| 353 |
+
"dataset = dataset[\"train\"].train_test_split(test_size=0.1)\n",
|
| 354 |
+
"dataset[\"validation\"] = dataset[\"test\"]\n",
|
| 355 |
+
"del dataset[\"test\"]\n",
|
| 356 |
+
"\n",
|
| 357 |
+
"classes = dataset[\"train\"].features[\"label\"].names\n",
|
| 358 |
+
"dataset = dataset.map(\n",
|
| 359 |
+
" lambda x: {\"text_label\": [classes[label] for label in x[\"label\"]]},\n",
|
| 360 |
+
" batched=True,\n",
|
| 361 |
+
" num_proc=1,\n",
|
| 362 |
+
")\n",
|
| 363 |
+
"\n",
|
| 364 |
+
"dataset[\"train\"][0]"
|
| 365 |
+
]
|
| 366 |
+
},
|
| 367 |
+
{
|
| 368 |
+
"cell_type": "code",
|
| 369 |
+
"execution_count": 4,
|
| 370 |
+
"id": "adf9608c",
|
| 371 |
+
"metadata": {
|
| 372 |
+
"ExecuteTime": {
|
| 373 |
+
"end_time": "2023-05-30T09:50:12.176663Z",
|
| 374 |
+
"start_time": "2023-05-30T09:50:11.421273Z"
|
| 375 |
+
}
|
| 376 |
+
},
|
| 377 |
+
"outputs": [
|
| 378 |
+
{
|
| 379 |
+
"name": "stderr",
|
| 380 |
+
"output_type": "stream",
|
| 381 |
+
"text": [
|
| 382 |
+
"/udir/tschilla/anaconda3/envs/peft/lib/python3.9/site-packages/transformers/models/t5/tokenization_t5_fast.py:155: FutureWarning: This tokenizer was incorrectly instantiated with a model max length of 512 which will be corrected in Transformers v5.\n",
|
| 383 |
+
"For now, this behavior is kept to avoid breaking backwards compatibility when padding/encoding with `truncation is True`.\n",
|
| 384 |
+
"- Be aware that you SHOULD NOT rely on t5-large automatically truncating your input to 512 when padding/encoding.\n",
|
| 385 |
+
"- If you want to encode/pad to sequences longer than 512 you can either instantiate this tokenizer with `model_max_length` or pass `max_length` when encoding/padding.\n",
|
| 386 |
+
"- To avoid this warning, please instantiate this tokenizer with `model_max_length` set to your preferred value.\n",
|
| 387 |
+
" warnings.warn(\n"
|
| 388 |
+
]
|
| 389 |
+
},
|
| 390 |
+
{
|
| 391 |
+
"data": {
|
| 392 |
+
"application/vnd.jupyter.widget-view+json": {
|
| 393 |
+
"model_id": "",
|
| 394 |
+
"version_major": 2,
|
| 395 |
+
"version_minor": 0
|
| 396 |
+
},
|
| 397 |
+
"text/plain": [
|
| 398 |
+
"Running tokenizer on dataset: 0%| | 0/2037 [00:00<?, ? examples/s]"
|
| 399 |
+
]
|
| 400 |
+
},
|
| 401 |
+
"metadata": {},
|
| 402 |
+
"output_type": "display_data"
|
| 403 |
+
},
|
| 404 |
+
{
|
| 405 |
+
"data": {
|
| 406 |
+
"application/vnd.jupyter.widget-view+json": {
|
| 407 |
+
"model_id": "",
|
| 408 |
+
"version_major": 2,
|
| 409 |
+
"version_minor": 0
|
| 410 |
+
},
|
| 411 |
+
"text/plain": [
|
| 412 |
+
"Running tokenizer on dataset: 0%| | 0/227 [00:00<?, ? examples/s]"
|
| 413 |
+
]
|
| 414 |
+
},
|
| 415 |
+
"metadata": {},
|
| 416 |
+
"output_type": "display_data"
|
| 417 |
+
}
|
| 418 |
+
],
|
| 419 |
+
"source": [
|
| 420 |
+
"# data preprocessing\n",
|
| 421 |
+
"tokenizer = AutoTokenizer.from_pretrained(model_name_or_path)\n",
|
| 422 |
+
"\n",
|
| 423 |
+
"\n",
|
| 424 |
+
"def preprocess_function(examples):\n",
|
| 425 |
+
" inputs = examples[text_column]\n",
|
| 426 |
+
" targets = examples[label_column]\n",
|
| 427 |
+
" model_inputs = tokenizer(inputs, max_length=max_length, padding=\"max_length\", truncation=True, return_tensors=\"pt\")\n",
|
| 428 |
+
" labels = tokenizer(targets, max_length=2, padding=\"max_length\", truncation=True, return_tensors=\"pt\")\n",
|
| 429 |
+
" labels = labels[\"input_ids\"]\n",
|
| 430 |
+
" labels[labels == tokenizer.pad_token_id] = -100\n",
|
| 431 |
+
" model_inputs[\"labels\"] = labels\n",
|
| 432 |
+
" return model_inputs\n",
|
| 433 |
+
"\n",
|
| 434 |
+
"\n",
|
| 435 |
+
"processed_datasets = dataset.map(\n",
|
| 436 |
+
" preprocess_function,\n",
|
| 437 |
+
" batched=True,\n",
|
| 438 |
+
" num_proc=1,\n",
|
| 439 |
+
" remove_columns=dataset[\"train\"].column_names,\n",
|
| 440 |
+
" load_from_cache_file=False,\n",
|
| 441 |
+
" desc=\"Running tokenizer on dataset\",\n",
|
| 442 |
+
")\n",
|
| 443 |
+
"\n",
|
| 444 |
+
"train_dataset = processed_datasets[\"train\"].shuffle()\n",
|
| 445 |
+
"eval_dataset = processed_datasets[\"validation\"]"
|
| 446 |
+
]
|
| 447 |
+
},
|
| 448 |
+
{
|
| 449 |
+
"cell_type": "code",
|
| 450 |
+
"execution_count": 5,
|
| 451 |
+
"id": "6b3a4090",
|
| 452 |
+
"metadata": {
|
| 453 |
+
"ExecuteTime": {
|
| 454 |
+
"end_time": "2023-05-30T09:53:10.336984Z",
|
| 455 |
+
"start_time": "2023-05-30T09:50:14.780995Z"
|
| 456 |
+
}
|
| 457 |
+
},
|
| 458 |
+
"outputs": [
|
| 459 |
+
{
|
| 460 |
+
"name": "stderr",
|
| 461 |
+
"output_type": "stream",
|
| 462 |
+
"text": [
|
| 463 |
+
"/udir/tschilla/anaconda3/envs/peft/lib/python3.9/site-packages/transformers/optimization.py:407: FutureWarning: This implementation of AdamW is deprecated and will be removed in a future version. Use the PyTorch implementation torch.optim.AdamW instead, or set `no_deprecation_warning=True` to disable this warning\n",
|
| 464 |
+
" warnings.warn(\n"
|
| 465 |
+
]
|
| 466 |
+
},
|
| 467 |
+
{
|
| 468 |
+
"data": {
|
| 469 |
+
"text/html": [
|
| 470 |
+
"\n",
|
| 471 |
+
" <div>\n",
|
| 472 |
+
" \n",
|
| 473 |
+
" <progress value='1275' max='1275' style='width:300px; height:20px; vertical-align: middle;'></progress>\n",
|
| 474 |
+
" [1275/1275 02:52, Epoch 5/5]\n",
|
| 475 |
+
" </div>\n",
|
| 476 |
+
" <table border=\"1\" class=\"dataframe\">\n",
|
| 477 |
+
" <thead>\n",
|
| 478 |
+
" <tr style=\"text-align: left;\">\n",
|
| 479 |
+
" <th>Epoch</th>\n",
|
| 480 |
+
" <th>Training Loss</th>\n",
|
| 481 |
+
" <th>Validation Loss</th>\n",
|
| 482 |
+
" <th>Accuracy</th>\n",
|
| 483 |
+
" </tr>\n",
|
| 484 |
+
" </thead>\n",
|
| 485 |
+
" <tbody>\n",
|
| 486 |
+
" <tr>\n",
|
| 487 |
+
" <td>1</td>\n",
|
| 488 |
+
" <td>4.784800</td>\n",
|
| 489 |
+
" <td>0.576933</td>\n",
|
| 490 |
+
" <td>0.559471</td>\n",
|
| 491 |
+
" </tr>\n",
|
| 492 |
+
" <tr>\n",
|
| 493 |
+
" <td>2</td>\n",
|
| 494 |
+
" <td>0.648200</td>\n",
|
| 495 |
+
" <td>0.437575</td>\n",
|
| 496 |
+
" <td>0.577093</td>\n",
|
| 497 |
+
" </tr>\n",
|
| 498 |
+
" <tr>\n",
|
| 499 |
+
" <td>3</td>\n",
|
| 500 |
+
" <td>0.536200</td>\n",
|
| 501 |
+
" <td>0.397857</td>\n",
|
| 502 |
+
" <td>0.625551</td>\n",
|
| 503 |
+
" </tr>\n",
|
| 504 |
+
" <tr>\n",
|
| 505 |
+
" <td>4</td>\n",
|
| 506 |
+
" <td>0.472200</td>\n",
|
| 507 |
+
" <td>0.373160</td>\n",
|
| 508 |
+
" <td>0.643172</td>\n",
|
| 509 |
+
" </tr>\n",
|
| 510 |
+
" <tr>\n",
|
| 511 |
+
" <td>5</td>\n",
|
| 512 |
+
" <td>0.452500</td>\n",
|
| 513 |
+
" <td>0.370234</td>\n",
|
| 514 |
+
" <td>0.656388</td>\n",
|
| 515 |
+
" </tr>\n",
|
| 516 |
+
" </tbody>\n",
|
| 517 |
+
"</table><p>"
|
| 518 |
+
],
|
| 519 |
+
"text/plain": [
|
| 520 |
+
"<IPython.core.display.HTML object>"
|
| 521 |
+
]
|
| 522 |
+
},
|
| 523 |
+
"metadata": {},
|
| 524 |
+
"output_type": "display_data"
|
| 525 |
+
},
|
| 526 |
+
{
|
| 527 |
+
"data": {
|
| 528 |
+
"text/plain": [
|
| 529 |
+
"TrainOutput(global_step=1275, training_loss=1.3787811279296875, metrics={'train_runtime': 173.3699, 'train_samples_per_second': 58.747, 'train_steps_per_second': 7.354, 'total_flos': 344546979840000.0, 'train_loss': 1.3787811279296875, 'epoch': 5.0})"
|
| 530 |
+
]
|
| 531 |
+
},
|
| 532 |
+
"execution_count": 5,
|
| 533 |
+
"metadata": {},
|
| 534 |
+
"output_type": "execute_result"
|
| 535 |
+
}
|
| 536 |
+
],
|
| 537 |
+
"source": [
|
| 538 |
+
"# training and evaluation\n",
|
| 539 |
+
"\n",
|
| 540 |
+
"\n",
|
| 541 |
+
"def compute_metrics(eval_preds):\n",
|
| 542 |
+
" preds, labels = eval_preds\n",
|
| 543 |
+
" preds = tokenizer.batch_decode(preds, skip_special_tokens=True)\n",
|
| 544 |
+
" labels = tokenizer.batch_decode(labels, skip_special_tokens=True)\n",
|
| 545 |
+
"\n",
|
| 546 |
+
" correct = 0\n",
|
| 547 |
+
" total = 0\n",
|
| 548 |
+
" for pred, true in zip(preds, labels):\n",
|
| 549 |
+
" if pred.strip() == true.strip():\n",
|
| 550 |
+
" correct += 1\n",
|
| 551 |
+
" total += 1\n",
|
| 552 |
+
" accuracy = correct / total\n",
|
| 553 |
+
" return {\"accuracy\": accuracy}\n",
|
| 554 |
+
"\n",
|
| 555 |
+
"\n",
|
| 556 |
+
"training_args = Seq2SeqTrainingArguments(\n",
|
| 557 |
+
" \"out\",\n",
|
| 558 |
+
" per_device_train_batch_size=batch_size,\n",
|
| 559 |
+
" learning_rate=lr,\n",
|
| 560 |
+
" num_train_epochs=num_epochs,\n",
|
| 561 |
+
" evaluation_strategy=\"epoch\",\n",
|
| 562 |
+
" logging_strategy=\"epoch\",\n",
|
| 563 |
+
" save_strategy=\"no\",\n",
|
| 564 |
+
" report_to=[],\n",
|
| 565 |
+
" predict_with_generate=True,\n",
|
| 566 |
+
" generation_config=GenerationConfig(max_length=max_length),\n",
|
| 567 |
+
")\n",
|
| 568 |
+
"trainer = Seq2SeqTrainer(\n",
|
| 569 |
+
" model=model,\n",
|
| 570 |
+
" tokenizer=tokenizer,\n",
|
| 571 |
+
" args=training_args,\n",
|
| 572 |
+
" train_dataset=train_dataset,\n",
|
| 573 |
+
" eval_dataset=eval_dataset,\n",
|
| 574 |
+
" data_collator=default_data_collator,\n",
|
| 575 |
+
" compute_metrics=compute_metrics,\n",
|
| 576 |
+
")\n",
|
| 577 |
+
"trainer.train()"
|
| 578 |
+
]
|
| 579 |
+
},
|
| 580 |
+
{
|
| 581 |
+
"cell_type": "code",
|
| 582 |
+
"execution_count": 6,
|
| 583 |
+
"id": "a8de6005",
|
| 584 |
+
"metadata": {
|
| 585 |
+
"ExecuteTime": {
|
| 586 |
+
"end_time": "2023-05-30T09:53:13.045146Z",
|
| 587 |
+
"start_time": "2023-05-30T09:53:13.035612Z"
|
| 588 |
+
}
|
| 589 |
+
},
|
| 590 |
+
"outputs": [],
|
| 591 |
+
"source": [
|
| 592 |
+
"# saving model\n",
|
| 593 |
+
"peft_model_id = f\"{model_name_or_path}_{peft_config.peft_type}_{peft_config.task_type}\"\n",
|
| 594 |
+
"model.save_pretrained(peft_model_id)"
|
| 595 |
+
]
|
| 596 |
+
},
|
| 597 |
+
{
|
| 598 |
+
"cell_type": "code",
|
| 599 |
+
"execution_count": 7,
|
| 600 |
+
"id": "bd20cd4c",
|
| 601 |
+
"metadata": {
|
| 602 |
+
"ExecuteTime": {
|
| 603 |
+
"end_time": "2023-05-30T09:53:15.240763Z",
|
| 604 |
+
"start_time": "2023-05-30T09:53:15.059304Z"
|
| 605 |
+
}
|
| 606 |
+
},
|
| 607 |
+
"outputs": [
|
| 608 |
+
{
|
| 609 |
+
"name": "stdout",
|
| 610 |
+
"output_type": "stream",
|
| 611 |
+
"text": [
|
| 612 |
+
"164K\tt5-large_PROMPT_TUNING_SEQ_2_SEQ_LM/adapter_model.bin\r\n"
|
| 613 |
+
]
|
| 614 |
+
}
|
| 615 |
+
],
|
| 616 |
+
"source": [
|
| 617 |
+
"ckpt = f\"{peft_model_id}/adapter_model.bin\"\n",
|
| 618 |
+
"!du -h $ckpt"
|
| 619 |
+
]
|
| 620 |
+
},
|
| 621 |
+
{
|
| 622 |
+
"cell_type": "code",
|
| 623 |
+
"execution_count": 8,
|
| 624 |
+
"id": "76c2fc29",
|
| 625 |
+
"metadata": {
|
| 626 |
+
"ExecuteTime": {
|
| 627 |
+
"end_time": "2023-05-30T09:53:25.055105Z",
|
| 628 |
+
"start_time": "2023-05-30T09:53:17.797989Z"
|
| 629 |
+
}
|
| 630 |
+
},
|
| 631 |
+
"outputs": [],
|
| 632 |
+
"source": [
|
| 633 |
+
"from peft import PeftModel, PeftConfig\n",
|
| 634 |
+
"\n",
|
| 635 |
+
"peft_model_id = f\"{model_name_or_path}_{peft_config.peft_type}_{peft_config.task_type}\"\n",
|
| 636 |
+
"\n",
|
| 637 |
+
"config = PeftConfig.from_pretrained(peft_model_id)\n",
|
| 638 |
+
"model = AutoModelForSeq2SeqLM.from_pretrained(config.base_model_name_or_path)\n",
|
| 639 |
+
"model = PeftModel.from_pretrained(model, peft_model_id)"
|
| 640 |
+
]
|
| 641 |
+
},
|
| 642 |
+
{
|
| 643 |
+
"cell_type": "code",
|
| 644 |
+
"execution_count": 9,
|
| 645 |
+
"id": "d997f1cc",
|
| 646 |
+
"metadata": {
|
| 647 |
+
"ExecuteTime": {
|
| 648 |
+
"end_time": "2023-05-30T09:53:26.777030Z",
|
| 649 |
+
"start_time": "2023-05-30T09:53:26.013697Z"
|
| 650 |
+
}
|
| 651 |
+
},
|
| 652 |
+
"outputs": [
|
| 653 |
+
{
|
| 654 |
+
"name": "stdout",
|
| 655 |
+
"output_type": "stream",
|
| 656 |
+
"text": [
|
| 657 |
+
"Aspocomp Group , headquartered in Helsinki , Finland , develops interconnection solutions for the electronics industry .\n",
|
| 658 |
+
"{'input_ids': tensor([[ 71, 7990, 7699, 1531, 3, 6, 3, 27630, 16, 29763,\n",
|
| 659 |
+
" 3, 6, 16458, 3, 6, 1344, 7, 1413, 28102, 1275,\n",
|
| 660 |
+
" 21, 8, 12800, 681, 3, 5, 1]]), 'attention_mask': tensor([[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,\n",
|
| 661 |
+
" 1, 1, 1]])}\n",
|
| 662 |
+
"tensor([[ 0, 7163, 1]])\n",
|
| 663 |
+
"['neutral']\n"
|
| 664 |
+
]
|
| 665 |
+
}
|
| 666 |
+
],
|
| 667 |
+
"source": [
|
| 668 |
+
"model.eval()\n",
|
| 669 |
+
"i = 107\n",
|
| 670 |
+
"inputs = tokenizer(dataset[\"validation\"][text_column][i], return_tensors=\"pt\")\n",
|
| 671 |
+
"print(dataset[\"validation\"][text_column][i])\n",
|
| 672 |
+
"print(inputs)\n",
|
| 673 |
+
"\n",
|
| 674 |
+
"with torch.no_grad():\n",
|
| 675 |
+
" outputs = model.generate(input_ids=inputs[\"input_ids\"], max_new_tokens=10)\n",
|
| 676 |
+
" print(outputs)\n",
|
| 677 |
+
" print(tokenizer.batch_decode(outputs.detach().cpu().numpy(), skip_special_tokens=True))"
|
| 678 |
+
]
|
| 679 |
+
},
|
| 680 |
+
{
|
| 681 |
+
"cell_type": "code",
|
| 682 |
+
"execution_count": null,
|
| 683 |
+
"id": "fb746c1e",
|
| 684 |
+
"metadata": {},
|
| 685 |
+
"outputs": [],
|
| 686 |
+
"source": []
|
| 687 |
+
}
|
| 688 |
+
],
|
| 689 |
+
"metadata": {
|
| 690 |
+
"kernelspec": {
|
| 691 |
+
"display_name": "peft",
|
| 692 |
+
"language": "python",
|
| 693 |
+
"name": "peft"
|
| 694 |
+
},
|
| 695 |
+
"language_info": {
|
| 696 |
+
"codemirror_mode": {
|
| 697 |
+
"name": "ipython",
|
| 698 |
+
"version": 3
|
| 699 |
+
},
|
| 700 |
+
"file_extension": ".py",
|
| 701 |
+
"mimetype": "text/x-python",
|
| 702 |
+
"name": "python",
|
| 703 |
+
"nbconvert_exporter": "python",
|
| 704 |
+
"pygments_lexer": "ipython3",
|
| 705 |
+
"version": "3.9.16"
|
| 706 |
+
},
|
| 707 |
+
"toc": {
|
| 708 |
+
"base_numbering": 1,
|
| 709 |
+
"nav_menu": {},
|
| 710 |
+
"number_sections": true,
|
| 711 |
+
"sideBar": true,
|
| 712 |
+
"skip_h1_title": false,
|
| 713 |
+
"title_cell": "Table of Contents",
|
| 714 |
+
"title_sidebar": "Contents",
|
| 715 |
+
"toc_cell": false,
|
| 716 |
+
"toc_position": {},
|
| 717 |
+
"toc_section_display": true,
|
| 718 |
+
"toc_window_display": false
|
| 719 |
+
},
|
| 720 |
+
"varInspector": {
|
| 721 |
+
"cols": {
|
| 722 |
+
"lenName": 16,
|
| 723 |
+
"lenType": 16,
|
| 724 |
+
"lenVar": 40
|
| 725 |
+
},
|
| 726 |
+
"kernels_config": {
|
| 727 |
+
"python": {
|
| 728 |
+
"delete_cmd_postfix": "",
|
| 729 |
+
"delete_cmd_prefix": "del ",
|
| 730 |
+
"library": "var_list.py",
|
| 731 |
+
"varRefreshCmd": "print(var_dic_list())"
|
| 732 |
+
},
|
| 733 |
+
"r": {
|
| 734 |
+
"delete_cmd_postfix": ") ",
|
| 735 |
+
"delete_cmd_prefix": "rm(",
|
| 736 |
+
"library": "var_list.r",
|
| 737 |
+
"varRefreshCmd": "cat(var_dic_list()) "
|
| 738 |
+
}
|
| 739 |
+
},
|
| 740 |
+
"types_to_exclude": [
|
| 741 |
+
"module",
|
| 742 |
+
"function",
|
| 743 |
+
"builtin_function_or_method",
|
| 744 |
+
"instance",
|
| 745 |
+
"_Feature"
|
| 746 |
+
],
|
| 747 |
+
"window_display": false
|
| 748 |
+
},
|
| 749 |
+
"vscode": {
|
| 750 |
+
"interpreter": {
|
| 751 |
+
"hash": "aee8b7b246df8f9039afb4144a1f6fd8d2ca17a180786b69acc140d282b71a49"
|
| 752 |
+
}
|
| 753 |
+
}
|
| 754 |
+
},
|
| 755 |
+
"nbformat": 4,
|
| 756 |
+
"nbformat_minor": 5
|
| 757 |
+
}
|