Spaces:
Runtime error
Runtime error
Create new file
Browse files
app.py
ADDED
@@ -0,0 +1,127 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import numpy as np
|
3 |
+
import gradio as gr
|
4 |
+
import torch
|
5 |
+
from torchvision import models, transforms
|
6 |
+
from PIL import Image
|
7 |
+
|
8 |
+
|
9 |
+
# -- install detectron2 from source ------------------------------------------------------------------------------
|
10 |
+
os.system('pip install git+https://github.com/facebookresearch/detectron2.git')
|
11 |
+
os.system('pip install pyyaml==5.1')
|
12 |
+
|
13 |
+
import detectron2
|
14 |
+
|
15 |
+
from detectron2.utils.logger import setup_logger
|
16 |
+
|
17 |
+
from detectron2 import model_zoo
|
18 |
+
from detectron2.engine import DefaultPredictor
|
19 |
+
from detectron2.config import get_cfg
|
20 |
+
from detectron2.utils.visualizer import Visualizer
|
21 |
+
from detectron2.data import MetadataCatalog, DatasetCatalog
|
22 |
+
import cv2
|
23 |
+
|
24 |
+
|
25 |
+
setup_logger()
|
26 |
+
|
27 |
+
# -- load rcnn model ---------------------------------------------------------------------------------------------
|
28 |
+
cfg = get_cfg()
|
29 |
+
# load model config
|
30 |
+
cfg.merge_from_file(model_zoo.get_config_file("COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_3x.yaml"))
|
31 |
+
cfg.MODEL.ROI_HEADS.SCORE_THRESH_TEST = 0.5 # set threshold for this model
|
32 |
+
# set model weights
|
33 |
+
cfg.MODEL.WEIGHTS = model_zoo.get_checkpoint_url("COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_3x.yaml")
|
34 |
+
cfg.MODEL.DEVICE= 'cpu' # move to cpu
|
35 |
+
predictor = DefaultPredictor(cfg) # create model
|
36 |
+
|
37 |
+
# -- load design modernity model for classification --------------------------------------------------------------
|
38 |
+
DesignModernityModel = torch.load("DesignModernityModel.pt")
|
39 |
+
|
40 |
+
DesignModernityModel.eval() # set state of the model to inference
|
41 |
+
|
42 |
+
# Set class labels
|
43 |
+
LABELS = ['2000-2003', '2006-2008', '2009-2011', '2012-2014', '2015-2018']
|
44 |
+
n_labels = len(LABELS)
|
45 |
+
|
46 |
+
# define maéan and std dev for normalization
|
47 |
+
MEAN = [0.485, 0.456, 0.406]
|
48 |
+
STD = [0.229, 0.224, 0.225]
|
49 |
+
|
50 |
+
# define image transformation steps
|
51 |
+
carTransforms = transforms.Compose([transforms.Resize(224),
|
52 |
+
transforms.ToTensor(),
|
53 |
+
transforms.Normalize(mean=MEAN, std=STD)])
|
54 |
+
|
55 |
+
|
56 |
+
# -- define a function for extraction of the detected car ---------------------------------------------------------
|
57 |
+
def cropImage(outputs, im, boxes, car_class_true):
|
58 |
+
# Get the masks
|
59 |
+
masks = list(np.array(outputs["instances"].pred_masks[car_class_true]))
|
60 |
+
max_idx = torch.tensor([(x[2] - x[0])*(x[3] - x[1]) for x in boxes]).argmax().item()
|
61 |
+
|
62 |
+
# Pick an item to mask
|
63 |
+
item_mask = masks[max_idx]
|
64 |
+
|
65 |
+
# Get the true bounding box of the mask
|
66 |
+
segmentation = np.where(item_mask == True) # return a list of different position in the bow, which are the actual detected object
|
67 |
+
x_min = int(np.min(segmentation[1])) # minimum x position
|
68 |
+
x_max = int(np.max(segmentation[1]))
|
69 |
+
y_min = int(np.min(segmentation[0]))
|
70 |
+
y_max = int(np.max(segmentation[0]))
|
71 |
+
|
72 |
+
# Create cropped image from the just portion of the image we want
|
73 |
+
cropped = Image.fromarray(im[y_min:y_max, x_min:x_max, :], mode = 'RGB')
|
74 |
+
# Create a PIL Image out of the mask
|
75 |
+
mask = Image.fromarray((item_mask * 255).astype('uint8')) ###### change 255
|
76 |
+
# Crop the mask to match the cropped image
|
77 |
+
cropped_mask = mask.crop((x_min, y_min, x_max, y_max))
|
78 |
+
|
79 |
+
# Load in a background image and choose a paste position
|
80 |
+
height = y_max-y_min
|
81 |
+
width = x_max-x_min
|
82 |
+
background = Image.new(mode='RGB', size=(width, height), color=(255, 255, 255, 0))
|
83 |
+
|
84 |
+
# Create a new foreground image as large as the composite and paste the cropped image on top
|
85 |
+
new_fg_image = Image.new('RGB', background.size)
|
86 |
+
new_fg_image.paste(cropped)
|
87 |
+
|
88 |
+
# Create a new alpha mask as large as the composite and paste the cropped mask
|
89 |
+
new_alpha_mask = Image.new('L', background.size, color=0)
|
90 |
+
new_alpha_mask.paste(cropped_mask)
|
91 |
+
|
92 |
+
#composite the foreground and background using the alpha mask
|
93 |
+
composite = Image.composite(new_fg_image, background, new_alpha_mask)
|
94 |
+
|
95 |
+
return composite
|
96 |
+
|
97 |
+
# -- define function for image segmentation and classification --------------------------------------------------------
|
98 |
+
def classifyCar(im):
|
99 |
+
# read image
|
100 |
+
#im = cv2.imread(im)
|
101 |
+
# perform segmentation
|
102 |
+
outputs = predictor(im)
|
103 |
+
v = Visualizer(im[:, :, ::-1], MetadataCatalog.get(cfg.DATASETS.TRAIN[0]), scale=1)
|
104 |
+
out = v.draw_instance_predictions(outputs["instances"])
|
105 |
+
# check if a car was detected in the image
|
106 |
+
car_class_true = outputs["instances"].pred_classes == 2
|
107 |
+
boxes = list(outputs["instances"].pred_boxes[car_class_true])
|
108 |
+
|
109 |
+
# if a car was detected, extract the car and perform modernity score classification
|
110 |
+
if len(boxes) != 0:
|
111 |
+
im2 = cropImage(outputs, im, boxes, car_class_true)
|
112 |
+
|
113 |
+
|
114 |
+
with torch.no_grad():
|
115 |
+
scores = torch.nn.functional.softmax(DesignModernityModel(carTransforms(im2).unsqueeze(0))[0])
|
116 |
+
label = {LABELS[i]: float(scores[i]) for i in range(n_labels)}
|
117 |
+
|
118 |
+
# if no car was detected, show original image and print "No car detected"
|
119 |
+
else:
|
120 |
+
im2 = Image.fromarray(np.uint8(im)).convert('RGB')
|
121 |
+
label = "No car detected"
|
122 |
+
|
123 |
+
return im2, label
|
124 |
+
|
125 |
+
# -- create interface for model ----------------------------------------------------------------------------------------
|
126 |
+
interface = gr.Interface(classifyCar, inputs='image', outputs=['image','label'], cache_examples=False, title='Modernity car classification')
|
127 |
+
interface.launch()
|