Spaces:
Runtime error
Runtime error
import streamlit as st | |
import pandas as pd | |
import altair as alt | |
#pip install -U sentence-transformers | |
#from sentence_transformers import SentenceTransformer, util | |
import numpy as np | |
import sys | |
import json | |
from torch.utils.data import DataLoader | |
from sentence_transformers import SentenceTransformer, LoggingHandler, util, models, evaluation, losses, InputExample | |
import logging | |
from datetime import datetime | |
import gzip | |
import os | |
import tarfile | |
from collections import defaultdict | |
from torch.utils.data import IterableDataset | |
import tqdm | |
from torch.utils.data import Dataset | |
import random | |
from shutil import copyfile | |
#from urllib.error import URLError | |
# Load document embeddings | |
# set up title and sidebar | |
st.title(" Your Top 3 Important Sessions") | |
st.markdown("This application is a dashboard for displaying your top 3 Sessions at the summit") | |
doc_emb = np.loadtxt("abstract-embed.txt", dtype=float) | |
# Load data | |
df = pd.read_csv("sessions.csv", usecols=['Unique ID', 'Name', 'Description', 'Activity Code', 'Start Time', 'End Time', 'Location Name']) | |
# front end elements of the web page | |
html_temp = """ | |
<div style ="background-color:lightblue;padding:13px"> | |
<h1 style ="color:white;text-align:center;">Sentence Similarity App Nashville Analytic Summit</h1> | |
</div> | |
""" | |
def main(): | |
# display the front end aspect | |
st.markdown(html_temp, unsafe_allow_html = True) | |
# Get attributes from dataframe | |
docs = list(df["Description"]) | |
titles = list(df["Name"]) | |
start_times = list(df["Start Time"]) | |
end_times = list(df["End Time"]) | |
locations = list(df["Location Name"]) | |
# Query | |
# Load the model | |
model = SentenceTransformer('sentence-transformers/multi-qa-MiniLM-L6-cos-v1') | |
query = st.text_input("Enter your query: ") | |
if query: | |
#st.text_area('Text area') | |
#age = st.number_input("Age in Years") | |
#Encode query and documents | |
query_emb = model.encode(query).astype(float) | |
#Compute dot score between query and all document embeddings | |
scores = util.dot_score(query_emb, doc_emb.astype(float))[0].cpu().tolist() | |
#Combine docs & scores with other attributes | |
doc_score_pairs = list(zip(docs, scores, titles, start_times, end_times, locations)) | |
# top_k results to return | |
top_k=3 | |
print(" Your top", top_k, "most similar sessions in the Summit:") | |
#Sort by decreasing score | |
doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True) | |
#Output presentation recommendations | |
for doc, score, title, start_time, end_time, location in doc_score_pairs[:top_k]: | |
st.write("Score: %f" %score) | |
st.write("Title: %s" %title) | |
st.write("Abstract: %s" %doc) | |
st.write("Location: %s" %location) | |
st.write(f"From {start_time} to {end_time}") | |
st.write('\n') | |
if __name__ == "__main__": | |
main() |