PBJ commited on
Commit
35a51d6
·
1 Parent(s): bf04682

Upload 2 files

Browse files
Files changed (2) hide show
  1. app.py +7 -7
  2. dsbert_toxic_balanced.pt +3 -0
app.py CHANGED
@@ -13,7 +13,7 @@ comment_input = []
13
  comment_input.append(comment)
14
  test_df = pd.DataFrame()
15
  test_df['comment_text'] = comment_input
16
- cols = {'toxic':[0], 'severe_toxic':[0], 'obscene':[0], 'threat':[0], 'insult':[0], 'identity_hate':[0]}
17
  for key in cols.keys():
18
  test_df[key] = cols[key]
19
  test_df = test_df.reset_index()
@@ -90,7 +90,7 @@ Test_data = Toxic_Dataset(X_test, Y_test)
90
  Test_Loader = DataLoader(Test_data, shuffle=False)
91
 
92
  # Loading pre-trained weights of DistilBert model for sequence classification
93
- # and changing classifiers output to 6 because we have 6 labels to classify.
94
  # DistilBERT
95
 
96
  from transformers import DistilBertForSequenceClassification
@@ -98,7 +98,7 @@ from transformers import DistilBertForSequenceClassification
98
  Distil_bert = DistilBertForSequenceClassification.from_pretrained("distilbert-base-uncased")
99
 
100
  Distil_bert.classifier = nn.Sequential(
101
- nn.Linear(768,6),
102
  nn.Sigmoid()
103
  )
104
  # print(Distil_bert)
@@ -106,7 +106,7 @@ Distil_bert.classifier = nn.Sequential(
106
  # Instantiating the model and loading the weights
107
  model = Distil_bert
108
  model.to('cpu')
109
- model = torch.load('dsbert_toxic.pt', map_location=torch.device('cpu'))
110
 
111
  # Making Predictions
112
  for comments, labels in Test_Loader:
@@ -119,7 +119,7 @@ for comments, labels in Test_Loader:
119
  op = output.logits
120
 
121
  res = []
122
- for i in range(6):
123
  res.append(op[0, i])
124
  # print(res)
125
 
@@ -128,10 +128,10 @@ preds = []
128
  for i in range(len(res)):
129
  preds.append(res[i].tolist())
130
 
131
- classes = ['Toxic', 'Severe Toxic', 'Obscene', 'Threat', 'Insult', 'Identity Hate']
132
 
133
  if st.button('Classify'):
134
  for i in range(len(res)):
135
  st.write(f"{classes[i]} : {round(preds[i], 2)}\n")
136
  st.success('These are the outputs')
137
-
 
13
  comment_input.append(comment)
14
  test_df = pd.DataFrame()
15
  test_df['comment_text'] = comment_input
16
+ cols = {'toxic':[0], 'severe_toxic':[0], 'obscene':[0], 'threat':[0], 'insult':[0], 'identity_hate':[0], 'non_toxic': [0]}
17
  for key in cols.keys():
18
  test_df[key] = cols[key]
19
  test_df = test_df.reset_index()
 
90
  Test_Loader = DataLoader(Test_data, shuffle=False)
91
 
92
  # Loading pre-trained weights of DistilBert model for sequence classification
93
+ # and changing classifiers output to 7 because we have 7 labels to classify.
94
  # DistilBERT
95
 
96
  from transformers import DistilBertForSequenceClassification
 
98
  Distil_bert = DistilBertForSequenceClassification.from_pretrained("distilbert-base-uncased")
99
 
100
  Distil_bert.classifier = nn.Sequential(
101
+ nn.Linear(768,7),
102
  nn.Sigmoid()
103
  )
104
  # print(Distil_bert)
 
106
  # Instantiating the model and loading the weights
107
  model = Distil_bert
108
  model.to('cpu')
109
+ model = torch.load('dsbert_toxic_balanced.pt', map_location=torch.device('cpu'))
110
 
111
  # Making Predictions
112
  for comments, labels in Test_Loader:
 
119
  op = output.logits
120
 
121
  res = []
122
+ for i in range(7):
123
  res.append(op[0, i])
124
  # print(res)
125
 
 
128
  for i in range(len(res)):
129
  preds.append(res[i].tolist())
130
 
131
+ classes = ['Toxic', 'Severe Toxic', 'Obscene', 'Threat', 'Insult', 'Identity Hate', 'Non Toxic']
132
 
133
  if st.button('Classify'):
134
  for i in range(len(res)):
135
  st.write(f"{classes[i]} : {round(preds[i], 2)}\n")
136
  st.success('These are the outputs')
137
+
dsbert_toxic_balanced.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a3bb55eaba141c4c5582838e502074b3c9bcff689321d85b3a3eff211b274c93
3
+ size 267889455