lev1's picture
auto anotators
f7ac35e
raw
history blame
18.1 kB
"""Modified from https://github.com/rwightman/pytorch-image-
models/blob/master/timm/models/vision_transformer.py."""
import math
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.utils.checkpoint as cp
from annotator.uniformer.mmcv.cnn import (Conv2d, Linear, build_activation_layer, build_norm_layer,
constant_init, kaiming_init, normal_init)
from annotator.uniformer.mmcv.runner import _load_checkpoint
from annotator.uniformer.mmcv.utils.parrots_wrapper import _BatchNorm
from annotator.uniformer.mmseg.utils import get_root_logger
from ..builder import BACKBONES
from ..utils import DropPath, trunc_normal_
class Mlp(nn.Module):
"""MLP layer for Encoder block.
Args:
in_features(int): Input dimension for the first fully
connected layer.
hidden_features(int): Output dimension for the first fully
connected layer.
out_features(int): Output dementsion for the second fully
connected layer.
act_cfg(dict): Config dict for activation layer.
Default: dict(type='GELU').
drop(float): Drop rate for the dropout layer. Dropout rate has
to be between 0 and 1. Default: 0.
"""
def __init__(self,
in_features,
hidden_features=None,
out_features=None,
act_cfg=dict(type='GELU'),
drop=0.):
super(Mlp, self).__init__()
out_features = out_features or in_features
hidden_features = hidden_features or in_features
self.fc1 = Linear(in_features, hidden_features)
self.act = build_activation_layer(act_cfg)
self.fc2 = Linear(hidden_features, out_features)
self.drop = nn.Dropout(drop)
def forward(self, x):
x = self.fc1(x)
x = self.act(x)
x = self.drop(x)
x = self.fc2(x)
x = self.drop(x)
return x
class Attention(nn.Module):
"""Attention layer for Encoder block.
Args:
dim (int): Dimension for the input vector.
num_heads (int): Number of parallel attention heads.
qkv_bias (bool): Enable bias for qkv if True. Default: False.
qk_scale (float): Override default qk scale of head_dim ** -0.5 if set.
attn_drop (float): Drop rate for attention output weights.
Default: 0.
proj_drop (float): Drop rate for output weights. Default: 0.
"""
def __init__(self,
dim,
num_heads=8,
qkv_bias=False,
qk_scale=None,
attn_drop=0.,
proj_drop=0.):
super(Attention, self).__init__()
self.num_heads = num_heads
head_dim = dim // num_heads
self.scale = qk_scale or head_dim**-0.5
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
self.attn_drop = nn.Dropout(attn_drop)
self.proj = Linear(dim, dim)
self.proj_drop = nn.Dropout(proj_drop)
def forward(self, x):
b, n, c = x.shape
qkv = self.qkv(x).reshape(b, n, 3, self.num_heads,
c // self.num_heads).permute(2, 0, 3, 1, 4)
q, k, v = qkv[0], qkv[1], qkv[2]
attn = (q @ k.transpose(-2, -1)) * self.scale
attn = attn.softmax(dim=-1)
attn = self.attn_drop(attn)
x = (attn @ v).transpose(1, 2).reshape(b, n, c)
x = self.proj(x)
x = self.proj_drop(x)
return x
class Block(nn.Module):
"""Implements encoder block with residual connection.
Args:
dim (int): The feature dimension.
num_heads (int): Number of parallel attention heads.
mlp_ratio (int): Ratio of mlp hidden dim to embedding dim.
qk_scale (float): Override default qk scale of head_dim ** -0.5 if set.
drop (float): Drop rate for mlp output weights. Default: 0.
attn_drop (float): Drop rate for attention output weights.
Default: 0.
proj_drop (float): Drop rate for attn layer output weights.
Default: 0.
drop_path (float): Drop rate for paths of model.
Default: 0.
act_cfg (dict): Config dict for activation layer.
Default: dict(type='GELU').
norm_cfg (dict): Config dict for normalization layer.
Default: dict(type='LN', requires_grad=True).
with_cp (bool): Use checkpoint or not. Using checkpoint will save some
memory while slowing down the training speed. Default: False.
"""
def __init__(self,
dim,
num_heads,
mlp_ratio=4,
qkv_bias=False,
qk_scale=None,
drop=0.,
attn_drop=0.,
proj_drop=0.,
drop_path=0.,
act_cfg=dict(type='GELU'),
norm_cfg=dict(type='LN', eps=1e-6),
with_cp=False):
super(Block, self).__init__()
self.with_cp = with_cp
_, self.norm1 = build_norm_layer(norm_cfg, dim)
self.attn = Attention(dim, num_heads, qkv_bias, qk_scale, attn_drop,
proj_drop)
self.drop_path = DropPath(
drop_path) if drop_path > 0. else nn.Identity()
_, self.norm2 = build_norm_layer(norm_cfg, dim)
mlp_hidden_dim = int(dim * mlp_ratio)
self.mlp = Mlp(
in_features=dim,
hidden_features=mlp_hidden_dim,
act_cfg=act_cfg,
drop=drop)
def forward(self, x):
def _inner_forward(x):
out = x + self.drop_path(self.attn(self.norm1(x)))
out = out + self.drop_path(self.mlp(self.norm2(out)))
return out
if self.with_cp and x.requires_grad:
out = cp.checkpoint(_inner_forward, x)
else:
out = _inner_forward(x)
return out
class PatchEmbed(nn.Module):
"""Image to Patch Embedding.
Args:
img_size (int | tuple): Input image size.
default: 224.
patch_size (int): Width and height for a patch.
default: 16.
in_channels (int): Input channels for images. Default: 3.
embed_dim (int): The embedding dimension. Default: 768.
"""
def __init__(self,
img_size=224,
patch_size=16,
in_channels=3,
embed_dim=768):
super(PatchEmbed, self).__init__()
if isinstance(img_size, int):
self.img_size = (img_size, img_size)
elif isinstance(img_size, tuple):
self.img_size = img_size
else:
raise TypeError('img_size must be type of int or tuple')
h, w = self.img_size
self.patch_size = (patch_size, patch_size)
self.num_patches = (h // patch_size) * (w // patch_size)
self.proj = Conv2d(
in_channels, embed_dim, kernel_size=patch_size, stride=patch_size)
def forward(self, x):
return self.proj(x).flatten(2).transpose(1, 2)
@BACKBONES.register_module()
class VisionTransformer(nn.Module):
"""Vision transformer backbone.
A PyTorch impl of : `An Image is Worth 16x16 Words: Transformers for
Image Recognition at Scale` - https://arxiv.org/abs/2010.11929
Args:
img_size (tuple): input image size. Default: (224, 224).
patch_size (int, tuple): patch size. Default: 16.
in_channels (int): number of input channels. Default: 3.
embed_dim (int): embedding dimension. Default: 768.
depth (int): depth of transformer. Default: 12.
num_heads (int): number of attention heads. Default: 12.
mlp_ratio (int): ratio of mlp hidden dim to embedding dim.
Default: 4.
out_indices (list | tuple | int): Output from which stages.
Default: -1.
qkv_bias (bool): enable bias for qkv if True. Default: True.
qk_scale (float): override default qk scale of head_dim ** -0.5 if set.
drop_rate (float): dropout rate. Default: 0.
attn_drop_rate (float): attention dropout rate. Default: 0.
drop_path_rate (float): Rate of DropPath. Default: 0.
norm_cfg (dict): Config dict for normalization layer.
Default: dict(type='LN', eps=1e-6, requires_grad=True).
act_cfg (dict): Config dict for activation layer.
Default: dict(type='GELU').
norm_eval (bool): Whether to set norm layers to eval mode, namely,
freeze running stats (mean and var). Note: Effect on Batch Norm
and its variants only. Default: False.
final_norm (bool): Whether to add a additional layer to normalize
final feature map. Default: False.
interpolate_mode (str): Select the interpolate mode for position
embeding vector resize. Default: bicubic.
with_cls_token (bool): If concatenating class token into image tokens
as transformer input. Default: True.
with_cp (bool): Use checkpoint or not. Using checkpoint
will save some memory while slowing down the training speed.
Default: False.
"""
def __init__(self,
img_size=(224, 224),
patch_size=16,
in_channels=3,
embed_dim=768,
depth=12,
num_heads=12,
mlp_ratio=4,
out_indices=11,
qkv_bias=True,
qk_scale=None,
drop_rate=0.,
attn_drop_rate=0.,
drop_path_rate=0.,
norm_cfg=dict(type='LN', eps=1e-6, requires_grad=True),
act_cfg=dict(type='GELU'),
norm_eval=False,
final_norm=False,
with_cls_token=True,
interpolate_mode='bicubic',
with_cp=False):
super(VisionTransformer, self).__init__()
self.img_size = img_size
self.patch_size = patch_size
self.features = self.embed_dim = embed_dim
self.patch_embed = PatchEmbed(
img_size=img_size,
patch_size=patch_size,
in_channels=in_channels,
embed_dim=embed_dim)
self.with_cls_token = with_cls_token
self.cls_token = nn.Parameter(torch.zeros(1, 1, self.embed_dim))
self.pos_embed = nn.Parameter(
torch.zeros(1, self.patch_embed.num_patches + 1, embed_dim))
self.pos_drop = nn.Dropout(p=drop_rate)
if isinstance(out_indices, int):
self.out_indices = [out_indices]
elif isinstance(out_indices, list) or isinstance(out_indices, tuple):
self.out_indices = out_indices
else:
raise TypeError('out_indices must be type of int, list or tuple')
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)
] # stochastic depth decay rule
self.blocks = nn.ModuleList([
Block(
dim=embed_dim,
num_heads=num_heads,
mlp_ratio=mlp_ratio,
qkv_bias=qkv_bias,
qk_scale=qk_scale,
drop=dpr[i],
attn_drop=attn_drop_rate,
act_cfg=act_cfg,
norm_cfg=norm_cfg,
with_cp=with_cp) for i in range(depth)
])
self.interpolate_mode = interpolate_mode
self.final_norm = final_norm
if final_norm:
_, self.norm = build_norm_layer(norm_cfg, embed_dim)
self.norm_eval = norm_eval
self.with_cp = with_cp
def init_weights(self, pretrained=None):
if isinstance(pretrained, str):
logger = get_root_logger()
checkpoint = _load_checkpoint(pretrained, logger=logger)
if 'state_dict' in checkpoint:
state_dict = checkpoint['state_dict']
else:
state_dict = checkpoint
if 'pos_embed' in state_dict.keys():
if self.pos_embed.shape != state_dict['pos_embed'].shape:
logger.info(msg=f'Resize the pos_embed shape from \
{state_dict["pos_embed"].shape} to {self.pos_embed.shape}')
h, w = self.img_size
pos_size = int(
math.sqrt(state_dict['pos_embed'].shape[1] - 1))
state_dict['pos_embed'] = self.resize_pos_embed(
state_dict['pos_embed'], (h, w), (pos_size, pos_size),
self.patch_size, self.interpolate_mode)
self.load_state_dict(state_dict, False)
elif pretrained is None:
# We only implement the 'jax_impl' initialization implemented at
# https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/vision_transformer.py#L353 # noqa: E501
trunc_normal_(self.pos_embed, std=.02)
trunc_normal_(self.cls_token, std=.02)
for n, m in self.named_modules():
if isinstance(m, Linear):
trunc_normal_(m.weight, std=.02)
if m.bias is not None:
if 'mlp' in n:
normal_init(m.bias, std=1e-6)
else:
constant_init(m.bias, 0)
elif isinstance(m, Conv2d):
kaiming_init(m.weight, mode='fan_in')
if m.bias is not None:
constant_init(m.bias, 0)
elif isinstance(m, (_BatchNorm, nn.GroupNorm, nn.LayerNorm)):
constant_init(m.bias, 0)
constant_init(m.weight, 1.0)
else:
raise TypeError('pretrained must be a str or None')
def _pos_embeding(self, img, patched_img, pos_embed):
"""Positiong embeding method.
Resize the pos_embed, if the input image size doesn't match
the training size.
Args:
img (torch.Tensor): The inference image tensor, the shape
must be [B, C, H, W].
patched_img (torch.Tensor): The patched image, it should be
shape of [B, L1, C].
pos_embed (torch.Tensor): The pos_embed weighs, it should be
shape of [B, L2, c].
Return:
torch.Tensor: The pos encoded image feature.
"""
assert patched_img.ndim == 3 and pos_embed.ndim == 3, \
'the shapes of patched_img and pos_embed must be [B, L, C]'
x_len, pos_len = patched_img.shape[1], pos_embed.shape[1]
if x_len != pos_len:
if pos_len == (self.img_size[0] // self.patch_size) * (
self.img_size[1] // self.patch_size) + 1:
pos_h = self.img_size[0] // self.patch_size
pos_w = self.img_size[1] // self.patch_size
else:
raise ValueError(
'Unexpected shape of pos_embed, got {}.'.format(
pos_embed.shape))
pos_embed = self.resize_pos_embed(pos_embed, img.shape[2:],
(pos_h, pos_w), self.patch_size,
self.interpolate_mode)
return self.pos_drop(patched_img + pos_embed)
@staticmethod
def resize_pos_embed(pos_embed, input_shpae, pos_shape, patch_size, mode):
"""Resize pos_embed weights.
Resize pos_embed using bicubic interpolate method.
Args:
pos_embed (torch.Tensor): pos_embed weights.
input_shpae (tuple): Tuple for (input_h, intput_w).
pos_shape (tuple): Tuple for (pos_h, pos_w).
patch_size (int): Patch size.
Return:
torch.Tensor: The resized pos_embed of shape [B, L_new, C]
"""
assert pos_embed.ndim == 3, 'shape of pos_embed must be [B, L, C]'
input_h, input_w = input_shpae
pos_h, pos_w = pos_shape
cls_token_weight = pos_embed[:, 0]
pos_embed_weight = pos_embed[:, (-1 * pos_h * pos_w):]
pos_embed_weight = pos_embed_weight.reshape(
1, pos_h, pos_w, pos_embed.shape[2]).permute(0, 3, 1, 2)
pos_embed_weight = F.interpolate(
pos_embed_weight,
size=[input_h // patch_size, input_w // patch_size],
align_corners=False,
mode=mode)
cls_token_weight = cls_token_weight.unsqueeze(1)
pos_embed_weight = torch.flatten(pos_embed_weight, 2).transpose(1, 2)
pos_embed = torch.cat((cls_token_weight, pos_embed_weight), dim=1)
return pos_embed
def forward(self, inputs):
B = inputs.shape[0]
x = self.patch_embed(inputs)
cls_tokens = self.cls_token.expand(B, -1, -1)
x = torch.cat((cls_tokens, x), dim=1)
x = self._pos_embeding(inputs, x, self.pos_embed)
if not self.with_cls_token:
# Remove class token for transformer input
x = x[:, 1:]
outs = []
for i, blk in enumerate(self.blocks):
x = blk(x)
if i == len(self.blocks) - 1:
if self.final_norm:
x = self.norm(x)
if i in self.out_indices:
if self.with_cls_token:
# Remove class token and reshape token for decoder head
out = x[:, 1:]
else:
out = x
B, _, C = out.shape
out = out.reshape(B, inputs.shape[2] // self.patch_size,
inputs.shape[3] // self.patch_size,
C).permute(0, 3, 1, 2)
outs.append(out)
return tuple(outs)
def train(self, mode=True):
super(VisionTransformer, self).train(mode)
if mode and self.norm_eval:
for m in self.modules():
if isinstance(m, nn.LayerNorm):
m.eval()