Spaces:
Runtime error
Runtime error
import einops | |
import torch | |
import torch as th | |
import torch.nn as nn | |
import math | |
from ldm.modules.diffusionmodules.util import ( | |
conv_nd, | |
linear, | |
zero_module, | |
timestep_embedding, | |
) | |
import torchvision | |
from einops import rearrange, repeat | |
from torchvision.utils import make_grid | |
from ldm.modules.attention import SpatialTransformer | |
from ldm.modules.diffusionmodules.openaimodel import UNetModel, TimestepEmbedSequential, ResBlock, Downsample, AttentionBlock | |
from ldm.models.diffusion.ddpm import LatentDiffusion | |
from ldm.util import log_txt_as_img, exists, instantiate_from_config | |
from ldm.models.diffusion.ddim import DDIMSampler | |
class VGGPerceptualLoss(torch.nn.Module): | |
def __init__(self, resize=True): | |
super(VGGPerceptualLoss, self).__init__() | |
blocks = [] | |
vgg_model = torchvision.models.vgg16(pretrained=True) | |
print('Loaded VGG weights') | |
blocks.append(vgg_model.features[:4].eval()) | |
blocks.append(vgg_model.features[4:9].eval()) | |
blocks.append(vgg_model.features[9:16].eval()) | |
blocks.append(vgg_model.features[16:23].eval()) | |
for bl in blocks: | |
for p in bl.parameters(): | |
p.requires_grad = False | |
self.blocks = torch.nn.ModuleList(blocks) | |
self.transform = torch.nn.functional.interpolate | |
self.resize = resize | |
self.register_buffer("mean", torch.tensor([0.485, 0.456, 0.406]).view(1, 3, 1, 1)) | |
self.register_buffer("std", torch.tensor([0.229, 0.224, 0.225]).view(1, 3, 1, 1)) | |
print('Initialized VGG model') | |
def forward(self, input, feature_layers=[0, 1, 2, 3], style_layers=[1,]): | |
if input.shape[1] != 3: | |
input = input.repeat(1, 3, 1, 1) | |
target = target.repeat(1, 3, 1, 1) | |
input = (input-self.mean) / self.std | |
if self.resize: | |
input = self.transform(input, mode='bilinear', size=(224, 224), align_corners=False) | |
x = input | |
gram_matrices_all = [] | |
feats = [] | |
for i, block in enumerate(self.blocks): | |
x = block(x) | |
if i in style_layers: | |
feats.append(x) | |
return feats | |
class ControlledUnetModel(UNetModel): | |
def forward(self, x, timesteps=None, context=None, control=None, only_mid_control=False, **kwargs): | |
hs = [] | |
with torch.no_grad(): | |
t_emb = timestep_embedding(timesteps, self.model_channels, repeat_only=False) | |
emb = self.time_embed(t_emb) | |
h = x.type(self.dtype) | |
for module in self.input_blocks: | |
h = module(h, emb, context) | |
hs.append(h) | |
h = self.middle_block(h, emb, context) | |
if control is not None: | |
h += control.pop() | |
for i, module in enumerate(self.output_blocks): | |
if only_mid_control or control is None: | |
h = torch.cat([h, hs.pop()], dim=1) | |
else: | |
h = torch.cat([h, hs.pop() + control.pop()], dim=1) | |
h = module(h, emb, context) | |
h = h.type(x.dtype) | |
return self.out(h) | |
class ControlNet(nn.Module): | |
def __init__( | |
self, | |
image_size, | |
in_channels, | |
model_channels, | |
hint_channels, | |
num_res_blocks, | |
attention_resolutions, | |
dropout=0, | |
channel_mult=(1, 2, 4, 8), | |
conv_resample=True, | |
dims=2, | |
use_checkpoint=False, | |
use_fp16=False, | |
num_heads=-1, | |
num_head_channels=-1, | |
num_heads_upsample=-1, | |
use_scale_shift_norm=False, | |
resblock_updown=False, | |
use_new_attention_order=False, | |
use_spatial_transformer=False, # custom transformer support | |
transformer_depth=1, # custom transformer support | |
context_dim=None, # custom transformer support | |
n_embed=None, # custom support for prediction of discrete ids into codebook of first stage vq model | |
legacy=True, | |
disable_self_attentions=None, | |
num_attention_blocks=None, | |
disable_middle_self_attn=False, | |
use_linear_in_transformer=False, | |
): | |
super().__init__() | |
if use_spatial_transformer: | |
assert context_dim is not None, 'Fool!! You forgot to include the dimension of your cross-attention conditioning...' | |
if context_dim is not None: | |
assert use_spatial_transformer, 'Fool!! You forgot to use the spatial transformer for your cross-attention conditioning...' | |
from omegaconf.listconfig import ListConfig | |
if type(context_dim) == ListConfig: | |
context_dim = list(context_dim) | |
if num_heads_upsample == -1: | |
num_heads_upsample = num_heads | |
if num_heads == -1: | |
assert num_head_channels != -1, 'Either num_heads or num_head_channels has to be set' | |
if num_head_channels == -1: | |
assert num_heads != -1, 'Either num_heads or num_head_channels has to be set' | |
self.dims = dims | |
self.image_size = image_size | |
self.in_channels = in_channels | |
self.model_channels = model_channels | |
if isinstance(num_res_blocks, int): | |
self.num_res_blocks = len(channel_mult) * [num_res_blocks] | |
else: | |
if len(num_res_blocks) != len(channel_mult): | |
raise ValueError("provide num_res_blocks either as an int (globally constant) or " | |
"as a list/tuple (per-level) with the same length as channel_mult") | |
self.num_res_blocks = num_res_blocks | |
if disable_self_attentions is not None: | |
# should be a list of booleans, indicating whether to disable self-attention in TransformerBlocks or not | |
assert len(disable_self_attentions) == len(channel_mult) | |
if num_attention_blocks is not None: | |
assert len(num_attention_blocks) == len(self.num_res_blocks) | |
assert all(map(lambda i: self.num_res_blocks[i] >= num_attention_blocks[i], range(len(num_attention_blocks)))) | |
print(f"Constructor of UNetModel received num_attention_blocks={num_attention_blocks}. " | |
f"This option has LESS priority than attention_resolutions {attention_resolutions}, " | |
f"i.e., in cases where num_attention_blocks[i] > 0 but 2**i not in attention_resolutions, " | |
f"attention will still not be set.") | |
self.attention_resolutions = attention_resolutions | |
self.dropout = dropout | |
self.channel_mult = channel_mult | |
self.conv_resample = conv_resample | |
self.use_checkpoint = use_checkpoint | |
self.dtype = th.float16 if use_fp16 else th.float32 | |
self.num_heads = num_heads | |
self.num_head_channels = num_head_channels | |
self.num_heads_upsample = num_heads_upsample | |
self.predict_codebook_ids = n_embed is not None | |
time_embed_dim = model_channels * 4 | |
self.time_embed = nn.Sequential( | |
linear(model_channels, time_embed_dim), | |
nn.SiLU(), | |
linear(time_embed_dim, time_embed_dim), | |
) | |
self.input_blocks = nn.ModuleList( | |
[ | |
TimestepEmbedSequential( | |
conv_nd(dims, in_channels, model_channels, 3, padding=1) | |
) | |
] | |
) | |
self.zero_convs = nn.ModuleList([self.make_zero_conv(model_channels)]) | |
self.input_hint_block = TimestepEmbedSequential( | |
conv_nd(dims, hint_channels, 16, 3, padding=1), | |
nn.SiLU(), | |
conv_nd(dims, 16, 16, 3, padding=1), | |
nn.SiLU(), | |
conv_nd(dims, 16, 32, 3, padding=1, stride=2), | |
nn.SiLU(), | |
conv_nd(dims, 32, 32, 3, padding=1), | |
nn.SiLU(), | |
conv_nd(dims, 32, 96, 3, padding=1, stride=2), | |
nn.SiLU(), | |
conv_nd(dims, 96, 96, 3, padding=1), | |
nn.SiLU(), | |
conv_nd(dims, 96, 256, 3, padding=1, stride=2), | |
nn.SiLU(), | |
zero_module(conv_nd(dims, 256, model_channels, 3, padding=1)) | |
) | |
self._feature_size = model_channels | |
input_block_chans = [model_channels] | |
ch = model_channels | |
ds = 1 | |
for level, mult in enumerate(channel_mult): | |
for nr in range(self.num_res_blocks[level]): | |
layers = [ | |
ResBlock( | |
ch, | |
time_embed_dim, | |
dropout, | |
out_channels=mult * model_channels, | |
dims=dims, | |
use_checkpoint=use_checkpoint, | |
use_scale_shift_norm=use_scale_shift_norm, | |
) | |
] | |
ch = mult * model_channels | |
if ds in attention_resolutions: | |
if num_head_channels == -1: | |
dim_head = ch // num_heads | |
else: | |
num_heads = ch // num_head_channels | |
dim_head = num_head_channels | |
if legacy: | |
# num_heads = 1 | |
dim_head = ch // num_heads if use_spatial_transformer else num_head_channels | |
if exists(disable_self_attentions): | |
disabled_sa = disable_self_attentions[level] | |
else: | |
disabled_sa = False | |
if not exists(num_attention_blocks) or nr < num_attention_blocks[level]: | |
layers.append( | |
AttentionBlock( | |
ch, | |
use_checkpoint=use_checkpoint, | |
num_heads=num_heads, | |
num_head_channels=dim_head, | |
use_new_attention_order=use_new_attention_order, | |
) if not use_spatial_transformer else SpatialTransformer( | |
ch, num_heads, dim_head, depth=transformer_depth, context_dim=context_dim, | |
disable_self_attn=disabled_sa, use_linear=use_linear_in_transformer, | |
use_checkpoint=use_checkpoint | |
) | |
) | |
self.input_blocks.append(TimestepEmbedSequential(*layers)) | |
self.zero_convs.append(self.make_zero_conv(ch)) | |
self._feature_size += ch | |
input_block_chans.append(ch) | |
if level != len(channel_mult) - 1: | |
out_ch = ch | |
self.input_blocks.append( | |
TimestepEmbedSequential( | |
ResBlock( | |
ch, | |
time_embed_dim, | |
dropout, | |
out_channels=out_ch, | |
dims=dims, | |
use_checkpoint=use_checkpoint, | |
use_scale_shift_norm=use_scale_shift_norm, | |
down=True, | |
) | |
if resblock_updown | |
else Downsample( | |
ch, conv_resample, dims=dims, out_channels=out_ch | |
) | |
) | |
) | |
ch = out_ch | |
input_block_chans.append(ch) | |
self.zero_convs.append(self.make_zero_conv(ch)) | |
ds *= 2 | |
self._feature_size += ch | |
if num_head_channels == -1: | |
dim_head = ch // num_heads | |
else: | |
num_heads = ch // num_head_channels | |
dim_head = num_head_channels | |
if legacy: | |
# num_heads = 1 | |
dim_head = ch // num_heads if use_spatial_transformer else num_head_channels | |
self.middle_block = TimestepEmbedSequential( | |
ResBlock( | |
ch, | |
time_embed_dim, | |
dropout, | |
dims=dims, | |
use_checkpoint=use_checkpoint, | |
use_scale_shift_norm=use_scale_shift_norm, | |
), | |
AttentionBlock( | |
ch, | |
use_checkpoint=use_checkpoint, | |
num_heads=num_heads, | |
num_head_channels=dim_head, | |
use_new_attention_order=use_new_attention_order, | |
) if not use_spatial_transformer else SpatialTransformer( # always uses a self-attn | |
ch, num_heads, dim_head, depth=transformer_depth, context_dim=context_dim, | |
disable_self_attn=disable_middle_self_attn, use_linear=use_linear_in_transformer, | |
use_checkpoint=use_checkpoint | |
), | |
ResBlock( | |
ch, | |
time_embed_dim, | |
dropout, | |
dims=dims, | |
use_checkpoint=use_checkpoint, | |
use_scale_shift_norm=use_scale_shift_norm, | |
), | |
) | |
self.middle_block_out = self.make_zero_conv(ch) | |
self._feature_size += ch | |
def make_zero_conv(self, channels): | |
return TimestepEmbedSequential(zero_module(conv_nd(self.dims, channels, channels, 1, padding=0))) | |
def forward(self, x, hint, timesteps, context, **kwargs): | |
t_emb = timestep_embedding(timesteps, self.model_channels, repeat_only=False) | |
emb = self.time_embed(t_emb) | |
guided_hint = self.input_hint_block(hint, emb, context, x.shape) | |
outs = [] | |
h = x.type(self.dtype) | |
for module, zero_conv in zip(self.input_blocks, self.zero_convs): | |
if guided_hint is not None: | |
h = module(h, emb, context) | |
h += guided_hint | |
guided_hint = None | |
else: | |
h = module(h, emb, context) | |
outs.append(zero_conv(h, emb, context)) | |
h = self.middle_block(h, emb, context) | |
outs.append(self.middle_block_out(h, emb, context)) | |
return outs | |
class Interpolate(nn.Module): | |
def __init__(self, size, mode): | |
super(Interpolate, self).__init__() | |
self.interp = torch.nn.functional.interpolate | |
self.size = size | |
self.mode = mode | |
self.factor = 8 | |
def forward(self, x): | |
h,w = x.shape[2]//self.factor, x.shape[3]//self.factor | |
x = self.interp(x, size=(h,w), mode=self.mode) | |
return x | |
class ControlNetSAP(ControlNet): | |
def __init__( | |
self, | |
hint_channels, | |
model_channels, | |
input_hint_block='fixed', | |
size = 64, | |
mode='nearest', | |
*args, | |
**kwargs | |
): | |
super().__init__( hint_channels=hint_channels, model_channels=model_channels, *args, **kwargs) | |
#hint channels are atleast 128 dims | |
if input_hint_block == 'learnable': | |
ch = 2 ** (int(math.log2(hint_channels))) | |
self.input_hint_block = TimestepEmbedSequential( | |
conv_nd(self.dims, hint_channels, hint_channels, 3, padding=1), | |
nn.SiLU(), | |
conv_nd(self.dims, hint_channels, 2*ch, 3, padding=1, stride=2), | |
nn.SiLU(), | |
conv_nd(self.dims, 2*ch, 2*ch, 3, padding=1), | |
nn.SiLU(), | |
conv_nd(self.dims, 2*ch, 2*ch, 3, padding=1, stride=2), | |
nn.SiLU(), | |
conv_nd(self.dims, 2*ch, 2*ch, 3, padding=1), | |
nn.SiLU(), | |
conv_nd(self.dims, 2*ch, model_channels, 3, padding=1, stride=2), | |
nn.SiLU(), | |
zero_module(conv_nd(self.dims, model_channels, model_channels, 3, padding=1)) | |
) | |
else: | |
print("Only interpolation") | |
self.input_hint_block = TimestepEmbedSequential( | |
Interpolate(size, mode), | |
zero_module(conv_nd(self.dims, hint_channels, model_channels, 3, padding=1))) | |
class ControlLDM(LatentDiffusion): | |
def __init__(self, control_stage_config, control_key, only_mid_control, *args, **kwargs): | |
super().__init__(*args, **kwargs) | |
self.control_model = instantiate_from_config(control_stage_config) | |
self.control_key = control_key | |
self.only_mid_control = only_mid_control | |
self.control_scales = [1.0] * 13 | |
def get_input(self, batch, k, bs=None, *args, **kwargs): | |
x, c = super().get_input(batch, self.first_stage_key, *args, **kwargs) | |
control = batch[self.control_key] | |
if bs is not None: | |
control = control[:bs] | |
control = control.to(self.device) | |
control = einops.rearrange(control, 'b h w c -> b c h w') | |
control = control.to(memory_format=torch.contiguous_format).float() | |
return x, dict(c_crossattn=[c], c_concat=[control]) | |
def apply_model(self, x_noisy, t, cond, *args, **kwargs): | |
assert isinstance(cond, dict) | |
diffusion_model = self.model.diffusion_model | |
cond_txt = torch.cat(cond['c_crossattn'], 1) | |
if cond['c_concat'] is None: | |
eps = diffusion_model(x=x_noisy, timesteps=t, context=cond_txt, control=None, only_mid_control=self.only_mid_control) | |
else: | |
control = self.control_model(x=x_noisy, hint=torch.cat(cond['c_concat'], 1), timesteps=t, context=cond_txt) | |
control = [c * scale for c, scale in zip(control, self.control_scales)] | |
eps = diffusion_model(x=x_noisy, timesteps=t, context=cond_txt, control=control, only_mid_control=self.only_mid_control) | |
return eps | |
def get_unconditional_conditioning(self, N): | |
return self.get_learned_conditioning([""] * N) | |
def log_images(self, batch, N=4, n_row=2, sample=False, ddim_steps=50, ddim_eta=0.0, return_keys=None, | |
quantize_denoised=True, inpaint=True, plot_denoise_rows=False, plot_progressive_rows=True, | |
plot_diffusion_rows=False, unconditional_guidance_scale=9.0, unconditional_guidance_label=None, | |
use_ema_scope=True, | |
**kwargs): | |
use_ddim = ddim_steps is not None | |
log = dict() | |
z, c = self.get_input(batch, self.first_stage_key, bs=N) | |
c_cat, c = c["c_concat"][0][:N], c["c_crossattn"][0][:N] | |
N = min(z.shape[0], N) | |
n_row = min(z.shape[0], n_row) | |
log["reconstruction"] = self.decode_first_stage(z) | |
log["control"] = c_cat * 2.0 - 1.0 | |
log["conditioning"] = log_txt_as_img((512, 512), batch[self.cond_stage_key], size=16) | |
if plot_diffusion_rows: | |
# get diffusion row | |
diffusion_row = list() | |
z_start = z[:n_row] | |
for t in range(self.num_timesteps): | |
if t % self.log_every_t == 0 or t == self.num_timesteps - 1: | |
t = repeat(torch.tensor([t]), '1 -> b', b=n_row) | |
t = t.to(self.device).long() | |
noise = torch.randn_like(z_start) | |
z_noisy = self.q_sample(x_start=z_start, t=t, noise=noise) | |
diffusion_row.append(self.decode_first_stage(z_noisy)) | |
diffusion_row = torch.stack(diffusion_row) # n_log_step, n_row, C, H, W | |
diffusion_grid = rearrange(diffusion_row, 'n b c h w -> b n c h w') | |
diffusion_grid = rearrange(diffusion_grid, 'b n c h w -> (b n) c h w') | |
diffusion_grid = make_grid(diffusion_grid, nrow=diffusion_row.shape[0]) | |
log["diffusion_row"] = diffusion_grid | |
if sample: | |
# get denoise row | |
samples, z_denoise_row = self.sample_log(cond={"c_concat": [c_cat], "c_crossattn": [c]}, | |
batch_size=N, ddim=use_ddim, | |
ddim_steps=ddim_steps, eta=ddim_eta) | |
x_samples = self.decode_first_stage(samples) | |
log["samples"] = x_samples | |
if plot_denoise_rows: | |
denoise_grid = self._get_denoise_row_from_list(z_denoise_row) | |
log["denoise_row"] = denoise_grid | |
if unconditional_guidance_scale > 1.0: | |
uc_cross = self.get_unconditional_conditioning(N) | |
uc_cat = c_cat # torch.zeros_like(c_cat) | |
uc_full = {"c_concat": [uc_cat], "c_crossattn": [uc_cross]} | |
samples_cfg, _ = self.sample_log(cond={"c_concat": [c_cat], "c_crossattn": [c]}, | |
batch_size=N, ddim=use_ddim, | |
ddim_steps=ddim_steps, eta=ddim_eta, | |
unconditional_guidance_scale=unconditional_guidance_scale, | |
unconditional_conditioning=uc_full, | |
) | |
x_samples_cfg = self.decode_first_stage(samples_cfg) | |
log[f"samples_cfg_scale_{unconditional_guidance_scale:.2f}"] = x_samples_cfg | |
return log | |
def sample_log(self, cond, batch_size, ddim, ddim_steps, **kwargs): | |
ddim_sampler = DDIMSampler(self) | |
b, c, h, w = cond["c_concat"][0].shape | |
shape = (self.channels, h // 8, w // 8) | |
samples, intermediates = ddim_sampler.sample(ddim_steps, batch_size, shape, cond, verbose=False, **kwargs) | |
return samples, intermediates | |
def configure_optimizers(self): | |
lr = self.learning_rate | |
params = list(self.control_model.parameters()) | |
if not self.sd_locked: | |
params += list(self.model.diffusion_model.output_blocks.parameters()) | |
params += list(self.model.diffusion_model.out.parameters()) | |
opt = torch.optim.AdamW(params, lr=lr) | |
return opt | |
def low_vram_shift(self, is_diffusing): | |
if is_diffusing: | |
self.model = self.model.cuda() | |
self.control_model = self.control_model.cuda() | |
self.first_stage_model = self.first_stage_model.cpu() | |
self.cond_stage_model = self.cond_stage_model.cpu() | |
else: | |
self.model = self.model.cpu() | |
self.control_model = self.control_model.cpu() | |
self.first_stage_model = self.first_stage_model.cuda() | |
self.cond_stage_model = self.cond_stage_model.cuda() | |
class SAP(ControlLDM): | |
def __init__(self,control_stage_config, control_key, only_mid_control, *args, **kwargs): | |
super().__init__(control_stage_config=control_stage_config, | |
control_key=control_key, | |
only_mid_control=only_mid_control, | |
*args, **kwargs) | |
self.appearance_net = VGGPerceptualLoss().to(self.device) | |
print("Loaded VGG model") | |
def get_appearance(self, img, mask, return_all=False): | |
img = (img + 1) * 0.5 | |
feat = self.appearance_net(img)[0] | |
empty_mask_flag = torch.sum(mask, dim=(1,2,3)) == 0 | |
empty_appearance = torch.zeros(feat.shape).to(self.device) | |
mask = torch.nn.functional.interpolate(mask.float(), (feat.shape[2:])).long() | |
one_hot = torch.nn.functional.one_hot(mask[:,0]).permute(0,3,1,2).float() | |
feat = torch.einsum('nchw, nmhw->nmchw', feat, one_hot) | |
feat = torch.sum(feat, dim=(3,4)) | |
norm = torch.sum(one_hot, dim=(2,3)) + 1e-6 #nm | |
mean_feat = feat/norm[:,:,None] #nmc | |
mean_feat[:, 0] = torch.zeros(mean_feat[:,0].shape).to(self.device) #set edges in panopitc mask to empty appearance feature | |
splatted_feat = torch.einsum('nmc, nmhw->nchw', mean_feat, one_hot) | |
splatted_feat[empty_mask_flag] = empty_appearance[empty_mask_flag] | |
splatted_feat = torch.nn.functional.normalize(splatted_feat) #l2 normalize on c dim | |
if return_all: | |
return splatted_feat, mean_feat, one_hot, empty_mask_flag | |
return splatted_feat | |
def get_input(self, batch, k, bs=None, *args, **kwargs): | |
z, c, x_orig, x_recon = super(ControlLDM, self).get_input(batch, self.first_stage_key, return_first_stage_outputs=True , *args, **kwargs) | |
structure = batch['seg'].unsqueeze(1) | |
mask = batch['mask'].unsqueeze(1).to(self.device) | |
appearance = self.get_appearance(x_orig, mask) | |
if bs is not None: | |
structure = structure[:bs] | |
appearance = appearance[:bs] | |
structure = structure.to(self.device) | |
appearance = appearance.to(self.device) | |
structure = structure.to(memory_format=torch.contiguous_format).float() | |
appearance = appearance.to(memory_format=torch.contiguous_format).float() | |
structure = torch.nn.functional.interpolate(structure, x_orig.shape[2:]) | |
appearance = torch.nn.functional.interpolate(appearance, x_orig.shape[2:]) | |
control = torch.cat([structure, appearance], dim=1) | |
return z, dict(c_crossattn=[c], c_concat=[control]) | |
def log_images(self, batch, N=4, n_row=2, sample=False, ddim_steps=50, ddim_eta=0.0, return_keys=None, | |
quantize_denoised=True, inpaint=True, plot_denoise_rows=False, plot_progressive_rows=False, | |
plot_diffusion_rows=False, unconditional_guidance_scale=9.0, unconditional_guidance_label=None, | |
use_ema_scope=True, | |
**kwargs): | |
use_ddim = ddim_steps is not None | |
log = dict() | |
z, c = self.get_input(batch, self.first_stage_key, bs=N) | |
c_cat, c = c["c_concat"][0][:N,], c["c_crossattn"][0][:N] | |
N = min(z.shape[0], N) | |
n_row = min(z.shape[0], n_row) | |
log["reconstruction"] = self.decode_first_stage(z) | |
log["control"] = c_cat[:, :1] | |
log["conditioning"] = log_txt_as_img((512, 512), batch[self.cond_stage_key], size=16) | |
if plot_diffusion_rows: | |
# get diffusion row | |
diffusion_row = list() | |
z_start = z[:n_row] | |
for t in range(self.num_timesteps): | |
if t % self.log_every_t == 0 or t == self.num_timesteps - 1: | |
t = repeat(torch.tensor([t]), '1 -> b', b=n_row) | |
t = t.to(self.device).long() | |
noise = torch.randn_like(z_start) | |
z_noisy = self.q_sample(x_start=z_start, t=t, noise=noise) | |
diffusion_row.append(self.decode_first_stage(z_noisy)) | |
diffusion_row = torch.stack(diffusion_row) # n_log_step, n_row, C, H, W | |
diffusion_grid = rearrange(diffusion_row, 'n b c h w -> b n c h w') | |
diffusion_grid = rearrange(diffusion_grid, 'b n c h w -> (b n) c h w') | |
diffusion_grid = make_grid(diffusion_grid, nrow=diffusion_row.shape[0]) | |
log["diffusion_row"] = diffusion_grid | |
if plot_progressive_rows: | |
with self.ema_scope("Plotting Progressives"): | |
img, progressives = self.progressive_denoising({"c_concat": [c_cat], "c_crossattn": [c]}, | |
shape=(self.channels, self.image_size, self.image_size), | |
batch_size=N) | |
prog_row = self._get_denoise_row_from_list(progressives, desc="Progressive Generation") | |
log["progressive_row"] = prog_row | |
if sample: | |
# get denoise row | |
samples, z_denoise_row = self.sample_log(cond={"c_concat": [c_cat], "c_crossattn": [c]}, | |
batch_size=N, ddim=use_ddim, | |
ddim_steps=ddim_steps, eta=ddim_eta) | |
x_samples = self.decode_first_stage(samples) | |
log["samples"] = x_samples | |
if plot_denoise_rows: | |
denoise_grid = self._get_denoise_row_from_list(z_denoise_row) | |
log["denoise_row"] = denoise_grid | |
if unconditional_guidance_scale > 1.0: | |
uc_cross = self.get_unconditional_conditioning(N) | |
uc_cat = c_cat # torch.zeros_like(c_cat) | |
uc_full = {"c_concat": [uc_cat], "c_crossattn": [uc_cross]} | |
samples_cfg, _ = self.sample_log(cond={"c_concat": [c_cat], "c_crossattn": [c]}, | |
batch_size=N, ddim=use_ddim, | |
ddim_steps=ddim_steps, eta=ddim_eta, | |
unconditional_guidance_scale=unconditional_guidance_scale, | |
unconditional_conditioning=uc_full, | |
) | |
x_samples_cfg = self.decode_first_stage(samples_cfg) | |
log[f"samples_cfg_scale_{unconditional_guidance_scale:.2f}"] = x_samples_cfg | |
return log | |