Spaces:
PAIR
/
Running on A10G

AndranikSargsyan
add support for diffusers checkpoint loading
f1cc496
raw
history blame
1.81 kB
import torchvision.transforms.functional as TF
from src.utils.iimage import IImage
import torch
import sys
from .utils import *
input_mask = None
input_shape = None
timestep = None
timestep_index = None
class Seed:
def __getitem__(self, idx):
if isinstance(idx, slice):
idx = list(range(*idx.indices(idx.stop)))
if isinstance(idx, list) or isinstance(idx, tuple):
return [self[_idx] for _idx in idx]
return 12345 ** idx % 54321
class DDIMIterator:
def __init__(self, iterator):
self.iterator = iterator
def __iter__(self):
self.iterator = iter(self.iterator)
global timestep_index
timestep_index = 0
return self
def __next__(self):
global timestep, timestep_index
timestep = next(self.iterator)
timestep_index += 1
return timestep
seed = Seed()
self = sys.modules[__name__]
def reshape(x):
return input_shape.reshape(x)
def set_shape(image_or_shape):
global input_shape
# if isinstance(image_or_shape, IImage):
if hasattr(image_or_shape, 'size'):
input_shape = InputShape(image_or_shape.size)
if isinstance(image_or_shape, torch.Tensor):
input_shape = InputShape(image_or_shape.shape[-2:][::-1])
elif isinstance(image_or_shape, list) or isinstance(image_or_shape, tuple):
input_shape = InputShape(image_or_shape)
def set_mask(mask):
global input_mask, mask64, mask32, mask16, mask8, painta_mask
input_mask = InputMask(mask)
painta_mask = InputMask(mask)
mask64 = input_mask.val64[0,0]
mask32 = input_mask.val32[0,0]
mask16 = input_mask.val16[0,0]
mask8 = input_mask.val8[0,0]
set_shape(mask)
def exists(name):
return hasattr(self, name) and getattr(self, name) is not None