Spaces:
Runtime error
Runtime error
import os | |
from typing import Text | |
import gradio as gr | |
import soundfile as sf | |
from transformers import pipeline | |
import numpy as np | |
import torch | |
import re | |
from speechbrain.pretrained import EncoderClassifier | |
def create_speaker_embedding(speaker_model, waveform: np.ndarray) -> np.ndarray: | |
with torch.no_grad(): | |
speaker_embeddings = speaker_model.encode_batch(torch.tensor(waveform)) | |
speaker_embeddings = torch.nn.functional.normalize(speaker_embeddings, dim=2) | |
if device.type != 'cuda': | |
speaker_embeddings = speaker_embeddings.squeeze().numpy() | |
else: | |
speaker_embeddings = speaker_embeddings.squeeze().cpu().numpy() | |
speaker_embeddings = torch.tensor(speaker_embeddings, dtype=dtype).unsqueeze(0).to(device) | |
return speaker_embeddings | |
def remove_special_characters_s(text: Text) -> Text: | |
chars_to_remove_regex = '[\-\…\–\"\“\%\‘\”\�\»\«\„\`\'́]' | |
# remove special characters | |
text = re.sub(chars_to_remove_regex, '', text) | |
text = re.sub("՚", "'", text) | |
text = re.sub("’", "'", text) | |
text = re.sub(r'ы', 'и', text) | |
text = text.lower() | |
return text | |
def cyrillic_to_latin(text: Text) -> Text: | |
replacements = [ | |
('а', 'a'), | |
('б', 'b'), | |
('в', 'v'), | |
('г', 'h'), | |
('д', 'd'), | |
('е', 'e'), | |
('ж', 'zh'), | |
('з', 'z'), | |
('и', 'y'), | |
('й', 'j'), | |
('к', 'k'), | |
('л', 'l'), | |
('м', 'm'), | |
('н', 'n'), | |
('о', 'o'), | |
('п', 'p'), | |
('р', 'r'), | |
('с', 's'), | |
('т', 't'), | |
('у', 'u'), | |
('ф', 'f'), | |
('х', 'h'), | |
('ц', 'ts'), | |
('ч', 'ch'), | |
('ш', 'sh'), | |
('щ', 'sch'), | |
('ь', "'"), | |
('ю', 'ju'), | |
('я', 'ja'), | |
('є', 'je'), | |
('і', 'i'), | |
('ї', 'ji'), | |
('ґ', 'g') | |
] | |
for src, dst in replacements: | |
text = text.replace(src, dst) | |
return text | |
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') | |
if torch.cuda.is_available(): | |
dtype = torch.bfloat16 if torch.cuda.get_device_capability()[0] == 8 else torch.float16 | |
else: | |
dtype = torch.float32 | |
spk_model_name = "speechbrain/spkrec-xvect-voxceleb" | |
speaker_model = EncoderClassifier.from_hparams( | |
source=spk_model_name, | |
run_opts={"device": device}, | |
savedir=os.path.join("/tmp", spk_model_name) | |
) | |
waveform, samplerate = sf.read("files/speaker.wav") | |
speaker_embeddings = create_speaker_embedding(speaker_model, waveform) | |
transcriber = pipeline("text-to-speech", model="Oysiyl/speecht5_tts_common_voice_uk") | |
def transcribe(text: Text) -> tuple((int, np.ndarray)): | |
text = remove_special_characters_s(text) | |
text = cyrillic_to_latin(text) | |
out = transcriber(text, forward_params={"speaker_embeddings": speaker_embeddings}) | |
audio, sr = out["audio"], out["sampling_rate"] | |
return sr, audio | |
demo = gr.Interface( | |
transcribe, | |
gr.Textbox(), | |
outputs="audio", | |
title="Text to Speech for Ukrainian language demo", | |
description="Click on the example below or type text!", | |
examples=[["Держава-агресор Росія закуповує комунікаційне обладнання, зокрема супутникові інтернет-термінали Starlink, для використання у війні в арабських країнах"], | |
["Доброго вечора, ми з України!"]], | |
cache_examples=True | |
) | |
demo.launch() |