Owos commited on
Commit
580be01
·
1 Parent(s): 6942a0f

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +55 -13
app.py CHANGED
@@ -1,20 +1,62 @@
 
 
 
 
 
 
1
  import streamlit as st
2
- from transformers import pipeline
3
- from PIL import Image
4
 
5
- pipeline = pipeline(task="image-classification", model="Owos/tb-classifier")
 
6
 
7
- st.title("Hot Dog? Or Not?")
 
 
8
 
9
- file_name = st.file_uploader("Upload a hot dog candidate image")
 
 
 
 
 
 
 
 
 
10
 
11
- if file_name is not None:
12
- col1, col2 = st.columns(2)
 
 
 
 
 
 
 
 
13
 
14
- image = Image.open(file_name)
15
- col1.image(image, use_column_width=True)
16
- predictions = pipeline(image)
 
 
17
 
18
- col2.header("Probabilities")
19
- for p in predictions:
20
- col2.subheader(f"{ p['label'] }: { round(p['score'] * 100, 1)}%")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ from keras.models import load_model
3
+ import tensorflow as tf
4
+ from tensorflow.keras.preprocessing import image
5
+ import matplotlib.pyplot as plt
6
+ import os
7
  import streamlit as st
8
+ from styling import footer
 
9
 
10
+ st.cache(allow_output_mutation=True)
11
+ st.title("TB Image Classifier")
12
 
13
+ # loading model
14
+ model = load_model('tb_model.h5')
15
+ # loading the imaage
16
 
17
+ file = st.file_uploader(
18
+ "Upload the image",
19
+ type=["png", "jpg"],
20
+ accept_multiple_files=False,
21
+ key=None,
22
+ help=None,
23
+ on_change=None,
24
+ args=None,
25
+ kwargs=None,
26
+ )
27
 
28
+ run = st.button(
29
+ "Make Prediction", key=None, help=None, on_click=None, args=None, kwargs=None
30
+ )
31
+ st.subheader("This app classifies an x-ray image if it has TB or not")
32
+ # image laoder
33
+ def load_image(img_path, img_size, show=False):
34
+ img = image.load_img(img_path, target_size=img_size)
35
+ img_tensor = image.img_to_array(img)
36
+ img_tensor = np.expand_dims(img_tensor, axis=0) # expanding image tensor
37
+ img_tensor = img_tensor / 255.0 # scaling the image_T
38
 
39
+ if show:
40
+ plt.imshow(img_tensor[0])
41
+ plt.axis("off")
42
+ plt.show()
43
+ return img_tensor
44
 
45
+
46
+ img_size = (300, 300)
47
+ img_path = "inference image from medscape.jpg"
48
+
49
+ classes = ["Negative", "Positive"]#["Normal", "Tuberculosis"]
50
+ if __name__ == "__main__":
51
+ ## load img
52
+ footer()
53
+ if run == True:
54
+ if file is not None:
55
+ img = load_image(img_path, img_size)
56
+ pred = model.predict(img)
57
+ output = classes[round(pred[0][0])]
58
+ st.subheader(f"The image is {output}")
59
+ else:
60
+ st.write("Please upload an image first")
61
+
62
+ # st.image(file)