Spaces:
Sleeping
Sleeping
Overglitch
commited on
Commit
•
0eef1a6
1
Parent(s):
a8e3ede
Update app.py
Browse files
app.py
CHANGED
@@ -1,9 +1,15 @@
|
|
1 |
-
|
2 |
-
from PIL import Image
|
3 |
import numpy as np
|
4 |
import pickle
|
5 |
-
from io import BytesIO
|
6 |
import math
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
|
8 |
def load_model():
|
9 |
with open('somlucuma.pkl', 'rb') as fid:
|
@@ -11,40 +17,36 @@ def load_model():
|
|
11 |
MM = np.loadtxt('matrizMM.txt', delimiter=" ")
|
12 |
return som, MM
|
13 |
|
14 |
-
def sobel(
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
for i in range(1, n-2):
|
22 |
-
Gx[j-1, i-1] = sum(sum(I[j-1:j+2, i-1:i+2] * gx))
|
23 |
-
Gy[j-1, i-1] = sum(sum(I[j-1:j+2, i-1:i+2] * gy))
|
24 |
return Gx, Gy
|
25 |
|
26 |
def medfilt2(G, d=3):
|
27 |
-
|
28 |
-
temp = np.zeros([m+2*(d//2), n+2*(d//2)], np.float32)
|
29 |
-
salida = np.zeros([m, n], np.float32)
|
30 |
-
temp[1:m+1, 1:n+1] = G
|
31 |
-
for i in range(1, m):
|
32 |
-
for j in range(1, n):
|
33 |
-
A = np.asarray(temp[i-1:i+2, j-1:j+2]).reshape(-1)
|
34 |
-
salida[i-1, j-1] = np.sort(A)[d+1]
|
35 |
-
return salida
|
36 |
|
37 |
def orientacion(patron, w):
|
38 |
Gx, Gy = sobel(patron)
|
39 |
Gx = medfilt2(Gx)
|
40 |
Gy = medfilt2(Gy)
|
|
|
41 |
m, n = Gx.shape
|
42 |
-
mOrientaciones = np.zeros(
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
48 |
return mOrientaciones
|
49 |
|
50 |
def representativo(imarray):
|
@@ -54,6 +56,9 @@ def representativo(imarray):
|
|
54 |
EE = orientacion(patron, 14)
|
55 |
return np.asarray(EE).reshape(-1)
|
56 |
|
|
|
|
|
|
|
57 |
app = FastAPI()
|
58 |
|
59 |
som, MM = load_model()
|
|
|
1 |
+
import cv2
|
|
|
2 |
import numpy as np
|
3 |
import pickle
|
|
|
4 |
import math
|
5 |
+
from fastapi import FastAPI, File, UploadFile, HTTPException
|
6 |
+
from PIL import Image
|
7 |
+
from io import BytesIO
|
8 |
+
from pydantic import BaseModel
|
9 |
+
from typing import List
|
10 |
+
from scipy.ndimage import median_filter
|
11 |
+
from scipy.signal import convolve2d
|
12 |
+
from minisom import MiniSom
|
13 |
|
14 |
def load_model():
|
15 |
with open('somlucuma.pkl', 'rb') as fid:
|
|
|
17 |
MM = np.loadtxt('matrizMM.txt', delimiter=" ")
|
18 |
return som, MM
|
19 |
|
20 |
+
def sobel(patron):
|
21 |
+
gx = np.array([[-1, 0, 1], [-2, 0, 2], [-1, 0, 1]], dtype=np.float32)
|
22 |
+
gy = np.array([[1, 2, 1], [0, 0, 0], [-1, -2, -1]], dtype=np.float32)
|
23 |
+
|
24 |
+
Gx = convolve2d(patron, gx, mode='valid')
|
25 |
+
Gy = convolve2d(patron, gy, mode='valid')
|
26 |
+
|
|
|
|
|
|
|
27 |
return Gx, Gy
|
28 |
|
29 |
def medfilt2(G, d=3):
|
30 |
+
return median_filter(G, size=d)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
31 |
|
32 |
def orientacion(patron, w):
|
33 |
Gx, Gy = sobel(patron)
|
34 |
Gx = medfilt2(Gx)
|
35 |
Gy = medfilt2(Gy)
|
36 |
+
|
37 |
m, n = Gx.shape
|
38 |
+
mOrientaciones = np.zeros((m // w, n // w), dtype=np.float32)
|
39 |
+
|
40 |
+
for i in range(m // w):
|
41 |
+
for j in range(n // w):
|
42 |
+
Gx_patch = Gx[i*w:(i+1)*w, j*w:(j+1)*w]
|
43 |
+
Gy_patch = Gy[i*w:(i+1)*w, j*w:(j+1)*w]
|
44 |
+
|
45 |
+
YY = np.sum(2 * Gx_patch * Gy_patch)
|
46 |
+
XX = np.sum(Gx_patch**2 - Gy_patch**2)
|
47 |
+
|
48 |
+
mOrientaciones[i, j] = (0.5 * np.arctan2(YY, XX) + np.pi / 2.0) * (18.0 / np.pi)
|
49 |
+
|
50 |
return mOrientaciones
|
51 |
|
52 |
def representativo(imarray):
|
|
|
56 |
EE = orientacion(patron, 14)
|
57 |
return np.asarray(EE).reshape(-1)
|
58 |
|
59 |
+
class InputData(BaseModel):
|
60 |
+
data: List[float]
|
61 |
+
|
62 |
app = FastAPI()
|
63 |
|
64 |
som, MM = load_model()
|