Spaces:
Sleeping
Sleeping
import cv2 | |
import numpy as np | |
import pickle | |
import math | |
from fastapi import FastAPI, File, UploadFile, HTTPException | |
from PIL import Image | |
from io import BytesIO | |
from pydantic import BaseModel | |
from typing import List | |
from scipy.ndimage import median_filter | |
from scipy.signal import convolve2d | |
from minisom import MiniSom | |
def load_model(): | |
with open('somlucuma.pkl', 'rb') as fid: | |
som = pickle.load(fid) | |
MM = np.loadtxt('matrizMM.txt', delimiter=" ") | |
return som, MM | |
def sobel(patron): | |
gx = np.array([[-1, 0, 1], [-2, 0, 2], [-1, 0, 1]], dtype=np.float32) | |
gy = np.array([[1, 2, 1], [0, 0, 0], [-1, -2, -1]], dtype=np.float32) | |
Gx = convolve2d(patron, gx, mode='valid') | |
Gy = convolve2d(patron, gy, mode='valid') | |
return Gx, Gy | |
def medfilt2(G, d=3): | |
return median_filter(G, size=d) | |
def orientacion(patron, w): | |
Gx, Gy = sobel(patron) | |
Gx = medfilt2(Gx) | |
Gy = medfilt2(Gy) | |
m, n = Gx.shape | |
mOrientaciones = np.zeros((m // w, n // w), dtype=np.float32) | |
for i in range(m // w): | |
for j in range(n // w): | |
Gx_patch = Gx[i*w:(i+1)*w, j*w:(j+1)*w] | |
Gy_patch = Gy[i*w:(i+1)*w, j*w:(j+1)*w] | |
YY = np.sum(2 * Gx_patch * Gy_patch) | |
XX = np.sum(Gx_patch**2 - Gy_patch**2) | |
mOrientaciones[i, j] = (0.5 * np.arctan2(YY, XX) + np.pi / 2.0) * (18.0 / np.pi) | |
return mOrientaciones | |
def representativo(imarray): | |
imarray = np.squeeze(imarray) | |
m, n = imarray.shape | |
patron = imarray[1:m-1, 1:n-1] | |
EE = orientacion(patron, 14) | |
return np.asarray(EE).reshape(-1) | |
class InputData(BaseModel): | |
data: List[float] | |
app = FastAPI() | |
som, MM = load_model() | |
async def predict(file: UploadFile = File(...)): | |
try: | |
contents = await file.read() | |
image = Image.open(BytesIO(contents)).convert('L') | |
image = np.asarray(image) | |
image = cv2.resize(image, (256, 256), interpolation=cv2.INTER_AREA) | |
if image.shape != (256, 256): | |
raise ValueError("La imagen debe ser de tamaño 256x256.") | |
image = image.reshape(256, 256, 1) | |
print(f"Imagen convertida a matriz: {image.shape}") | |
representative_data = representativo(image) | |
print(f"Datos representativos de la imagen: {representative_data.shape}") | |
representative_data = representative_data.reshape(1, -1) | |
w = som.winner(representative_data) | |
print(f"Índice ganador del SOM: {w}") | |
prediction = MM[w] | |
print(f"Predicción: {prediction}") | |
return {"prediction": prediction} | |
except Exception as e: | |
raise HTTPException(status_code=500, detail=str(e)) |