TideMon / app.py
OttoYu's picture
add sample
3703659 verified
import gradio as gr
import pandas as pd
import plotly.express as px
import requests
from bs4 import BeautifulSoup
import csv
from datetime import datetime
import calendar
color_map = {
"Shek Pik": "blue",
"Quarry Bay": "red"
}
def get_end_date_from_month(month_str):
try:
dt = datetime.strptime(month_str, "%Y-%m")
except ValueError:
raise ValueError("Invalid format. Please use YYYY-MM (e.g., '2023-07')")
last_day = calendar.monthrange(dt.year, dt.month)[1]
return dt.year, dt.month, f"{dt.year}-{dt.month:02d}-{last_day:02d}"
def fetch_measured_data(station_name, endtime, period="30"):
station_codes = {"Quarry Bay": "quar", "Shek Pik": "shek"}
code = station_codes.get(station_name)
if not code:
raise ValueError(f"Invalid station name: {station_name}")
if len(endtime) == 10:
endtime_full = endtime + " 23:59:59"
else:
endtime_full = endtime
url = f"https://www.ioc-sealevelmonitoring.org/bgraph.php?code={code}&output=tab&period={period}&endtime={endtime_full}"
try:
response = requests.get(url)
response.raise_for_status()
except requests.RequestException as e:
raise RuntimeError(f"Error fetching data: {e}")
soup = BeautifulSoup(response.text, 'html.parser')
table = soup.find('table')
if not table:
raise ValueError(f"No data table found in HTML for station {station_name} at {endtime_full}")
rows = table.find_all('tr')
data = [[col.get_text(strip=True) for col in row.find_all(['td', 'th'])] for row in rows]
output_csv = f"{code}_tide_data.csv"
with open(output_csv, 'w', newline='', encoding='utf-8') as f:
writer = csv.writer(f)
writer.writerows(data)
return output_csv
def load_measured_csv(file_path, station_name):
df = pd.read_csv(file_path)
df.columns = df.columns.str.strip()
df['Time (UTC)'] = pd.to_datetime(df['Time (UTC)'], errors='coerce')
df = df.dropna(subset=['Time (UTC)'])
df['Time (UTC+8)'] = df['Time (UTC)'].dt.tz_localize('UTC').dt.tz_convert('Asia/Hong_Kong')
df['Station'] = station_name
return df[['Time (UTC+8)', 'flt(m)', 'Station']].rename(columns={'flt(m)': 'Measured'})
def fetch_hko_tide_data(url, station_name, year):
try:
response = requests.get(url)
response.raise_for_status()
except requests.RequestException:
return None
soup = BeautifulSoup(response.text, 'html.parser')
rows = soup.find_all('tr')[1:]
data = []
for row in rows:
cols = [td.get_text(strip=True) for td in row.find_all(['td', 'th'])]
if len(cols) >= 26:
mm, dd = cols[0], cols[1]
for hour in range(24):
tide_str = cols[hour + 2]
if tide_str == '':
continue
try:
tide = float(tide_str)
dt = datetime(year, int(mm), int(dd), hour)
data.append({'Datetime': dt, 'Tide Height (m)': tide, 'Station': station_name})
except ValueError:
continue
return pd.DataFrame(data)
def tide_analysis_for_month_gradio(month_str):
logs = []
if not month_str:
return "Please enter a month in YYYY-MM format.", None, None, None
try:
logs.append(f"Parsing input month: {month_str}")
year, month, end_date = get_end_date_from_month(month_str)
logs.append(f"End date calculated: {end_date}")
# Fetch measured data
logs.append("Fetching measured data for Shek Pik...")
file_shek = fetch_measured_data("Shek Pik", end_date)
logs.append("Fetching measured data for Quarry Bay...")
file_quar = fetch_measured_data("Quarry Bay", end_date)
logs.append("Loading and processing measured CSV data...")
df_shek = load_measured_csv(file_shek, "Shek Pik")
df_quar = load_measured_csv(file_quar, "Quarry Bay")
df_measured = pd.concat([df_shek, df_quar], ignore_index=True)
min_time = df_measured['Time (UTC+8)'].min()
max_time = df_measured['Time (UTC+8)'].max()
logs.append(f"Measured data range: {min_time} to {max_time}")
# Fetch predicted tide data
logs.append("Fetching predicted tide data from HKO...")
url_quar = f"https://www.hko.gov.hk/tide/QUBtextPH{year}.htm"
url_shek = f"https://www.hko.gov.hk/tide/SPWtextPH{year}.htm"
df_pred_quar = fetch_hko_tide_data(url_quar, "Quarry Bay", year)
df_pred_shek = fetch_hko_tide_data(url_shek, "Shek Pik", year)
if df_pred_quar is None or df_pred_shek is None:
logs.append("Failed to fetch predicted tide data.")
return "\n".join(logs), None, None, None
logs.append("Processing predicted tide data...")
df_pred = pd.concat([df_pred_quar, df_pred_shek], ignore_index=True)
df_pred['Time (UTC+8)'] = pd.to_datetime(df_pred['Datetime']).dt.tz_localize('Asia/Hong_Kong')
df_pred = df_pred.rename(columns={'Tide Height (m)': 'Predicted'})
df_pred = df_pred[(df_pred['Time (UTC+8)'] >= min_time) & (df_pred['Time (UTC+8)'] <= max_time)]
logs.append("Generating plot for predicted tide...")
fig_pred = px.line(df_pred, x='Time (UTC+8)', y='Predicted', color='Station',
title='Predicted Tide',
labels={'Predicted': 'Tide Height (m)', 'Time (UTC+8)': 'Time (UTC+8)'},
color_discrete_map=color_map)
fig_pred.update_traces(mode='lines+markers')
logs.append("Generating plot for measured tide...")
fig_meas = px.line(df_measured, x='Time (UTC+8)', y='Measured', color='Station',
title='Measured Tide',
labels={'Measured': 'Tide Height (m)', 'Time (UTC+8)': 'Time (UTC+8)'},
color_discrete_map=color_map)
fig_meas.update_traces(mode='lines+markers')
logs.append("Calculating and plotting residuals...")
df_merged = pd.merge(df_measured, df_pred[['Time (UTC+8)', 'Predicted', 'Station']],
on=['Time (UTC+8)', 'Station'], how='inner')
df_merged['Residual'] = df_merged['Measured'] - df_merged['Predicted']
fig_resid = px.line(df_merged, x='Time (UTC+8)', y='Residual', color='Station',
title='Tide Residuals (Measured - Predicted)',
labels={'Residual': 'Residual (m)', 'Time (UTC+8)': 'Time (UTC+8)'},
color_discrete_map=color_map)
fig_resid.update_traces(mode='lines+markers')
logs.append("Analysis completed successfully.")
return "\n".join(logs), fig_pred, fig_meas, fig_resid
except Exception as e:
logs.append(f"Error during processing: {e}")
return "\n".join(logs), None, None, None
with gr.Blocks() as demo:
gr.Markdown("## Tide Time Series Analysis by Month")
# --- First Row: Controls ---
with gr.Row():
month_input = gr.Textbox(label="Enter Month (YYYY-MM)", placeholder="e.g. 2023-07")
run_btn = gr.Button("Run Analysis")
# --- Sample Storm Surge Buttons (small and inline) ---
gr.Markdown("#### Sample Storm Surge Months")
with gr.Row():
sample_1 = gr.Button("2025-07 (Wipha)", scale=1)
sample_2 = gr.Button("2021-10 (Lionrock)", scale=1)
sample_3 = gr.Button("2022-08 (Ma-on)", scale=1)
sample_4 = gr.Button("2022-11 (Nalgae)", scale=1)
# --- Second Row: Plot Area ---
with gr.Row():
with gr.Column():
with gr.Row():
plot_meas = gr.Plot(label="Measured Tide")
plot_resid = gr.Plot(label="Residuals")
with gr.Row():
plot_pred = gr.Plot(label="Predicted Tide")
status_output = gr.Textbox(label="Status / Error", interactive=False, lines=1)
# --- Main Run Button Action ---
run_btn.click(fn=tide_analysis_for_month_gradio,
inputs=month_input,
outputs=[status_output, plot_pred, plot_meas, plot_resid])
# --- Sample Buttons Actions ---
sample_1.click(fn=lambda: "2025-07", inputs=[], outputs=month_input).then(
fn=tide_analysis_for_month_gradio,
inputs=month_input,
outputs=[status_output, plot_pred, plot_meas, plot_resid]
)
sample_2.click(fn=lambda: "2021-10", inputs=[], outputs=month_input).then(
fn=tide_analysis_for_month_gradio,
inputs=month_input,
outputs=[status_output, plot_pred, plot_meas, plot_resid]
)
sample_3.click(fn=lambda: "2022-08", inputs=[], outputs=month_input).then(
fn=tide_analysis_for_month_gradio,
inputs=month_input,
outputs=[status_output, plot_pred, plot_meas, plot_resid]
)
sample_4.click(fn=lambda: "2022-11", inputs=[], outputs=month_input).then(
fn=tide_analysis_for_month_gradio,
inputs=month_input,
outputs=[status_output, plot_pred, plot_meas, plot_resid]
)
if __name__ == "__main__":
demo.launch()