Spaces:
Runtime error
Runtime error
import gradio as gr | |
from transformers import DPTFeatureExtractor, DPTForDepthEstimation | |
import torch | |
import numpy as np | |
from PIL import Image | |
import cv2 | |
from sklearn.cluster import KMeans | |
from matplotlib import pyplot as plt | |
torch.hub.download_url_to_file('http://images.cocodataset.org/val2017/000000039769.jpg', 'cats.jpg') | |
feature_extractor = DPTFeatureExtractor.from_pretrained("Intel/dpt-large") | |
model = DPTForDepthEstimation.from_pretrained("Intel/dpt-large") | |
def process_image(image): | |
# Prepare image for the model | |
encoding = feature_extractor(image, return_tensors="pt") | |
# Forward pass | |
with torch.no_grad(): | |
outputs = model(**encoding) | |
predicted_depth = outputs.predicted_depth | |
# Interpolate to original size | |
prediction = torch.nn.functional.interpolate( | |
predicted_depth.unsqueeze(1), | |
size=image.size[::-1], | |
mode="bicubic", | |
align_corners=False, | |
).squeeze() | |
depth_map_gray = (prediction.cpu().numpy() * 255).astype('uint8') | |
# Perform feature segmentation | |
rgb_image = np.array(image) | |
depth_threshold = 1000 | |
binary_mask = np.where(depth_map_gray > depth_threshold, 255, 0).astype(np.uint8) | |
gray_image = cv2.cvtColor(rgb_image, cv2.COLOR_RGB2GRAY) | |
pixels = gray_image.reshape((-1, 1)) | |
num_clusters = 3 | |
kmeans = KMeans(n_clusters=num_clusters) | |
kmeans.fit(pixels) | |
labels = kmeans.labels_ | |
labels = labels.reshape(gray_image.shape) | |
cluster_features = [] | |
for i in range(num_clusters): | |
mask = np.where(labels == i, 255, 0).astype(np.uint8) | |
cluster_image = cv2.bitwise_and(rgb_image, rgb_image, mask=mask) | |
cluster_features.append(cluster_image) | |
# Prepare output images | |
depth_image = Image.fromarray(depth_map_gray, mode='L') | |
cluster_images = [Image.fromarray(cluster) for cluster in cluster_features] | |
return depth_image, cluster_images | |
title = "Demo: zero-shot depth estimation with DPT and feature segmentation" | |
description = "Demo for Intel's DPT with feature segmentation, a Dense Prediction Transformer for state-of-the-art dense prediction tasks such as semantic segmentation and depth estimation." | |
examples = [['cats.jpg']] | |
iface = gr.Interface( | |
fn=process_image, | |
inputs=gr.inputs.Image(type="pil"), | |
outputs=[ | |
gr.outputs.Image(type="pil", label="predicted depth"), | |
gr.outputs.Image(type="pil", label="cluster 1"), | |
gr.outputs.Image(type="pil", label="cluster 2"), | |
gr.outputs.Image(type="pil", label="cluster 3"), | |
], | |
title=title, | |
description=description, | |
examples=examples, | |
enable_queue=True | |
) | |
iface.launch(debug=True) | |