Spaces:
Runtime error
Runtime error
import gradio as gr | |
import os | |
import numpy as np | |
import torch | |
from models.network_swinir import SwinIR | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
print("device: %s" % device) | |
default_models = { | |
"sr": "weights/003_realSR_BSRGAN_DFO_s64w8_SwinIR-M_x4_GAN.pth", | |
"denoise": "weights/005_colorDN_DFWB_s128w8_SwinIR-M_noise25.pth" | |
} | |
torch.backends.cudnn.enabled = True | |
torch.backends.cudnn.benchmark = True | |
denoise_model = SwinIR(upscale=1, in_chans=3, img_size=128, window_size=8, | |
img_range=1., depths=[6, 6, 6, 6, 6, 6], embed_dim=180, num_heads=[6, 6, 6, 6, 6, 6], | |
mlp_ratio=2, upsampler='', resi_connection='1conv').to(device) | |
param_key_g = 'params' | |
try: | |
pretrained_model = torch.load(default_models["denoise"]) | |
denoise_model.load_state_dict(pretrained_model[param_key_g] if param_key_g in pretrained_model.keys() else pretrained_model, strict=True) | |
except: print("Loading model failed") | |
denoise_model.eval() | |
sr_model = SwinIR(upscale=4, in_chans=3, img_size=64, window_size=8, | |
img_range=1., depths=[6, 6, 6, 6, 6, 6], embed_dim=180, num_heads=[6, 6, 6, 6, 6, 6], | |
mlp_ratio=2, upsampler='nearest+conv', resi_connection='1conv').to(device) | |
param_key_g = 'params_ema' | |
try: | |
pretrained_model = torch.load(default_models["sr"]) | |
sr_model.load_state_dict(pretrained_model[param_key_g] if param_key_g in pretrained_model.keys() else pretrained_model, strict=True) | |
except: print("Loading model failed") | |
sr_model.eval() | |
def sr(input_img): | |
window_size = 8 | |
# read image | |
img_lq = input_img.astype(np.float32) / 255. | |
img_lq = np.transpose(img_lq if img_lq.shape[2] == 1 else img_lq[:, :, [2, 1, 0]], (2, 0, 1)) # HCW-BGR to CHW-RGB | |
img_lq = torch.from_numpy(img_lq).float().unsqueeze(0).to(device) # CHW-RGB to NCHW-RGB | |
# inference | |
with torch.no_grad(): | |
# pad input image to be a multiple of window_size | |
_, _, h_old, w_old = img_lq.size() | |
h_pad = (h_old // window_size + 1) * window_size - h_old | |
w_pad = (w_old // window_size + 1) * window_size - w_old | |
img_lq = torch.cat([img_lq, torch.flip(img_lq, [2])], 2)[:, :, :h_old + h_pad, :] | |
img_lq = torch.cat([img_lq, torch.flip(img_lq, [3])], 3)[:, :, :, :w_old + w_pad] | |
output = sr_model(img_lq) | |
output = output[..., :h_old * 4, :w_old * 4] | |
# save image | |
output = output.data.squeeze().float().cpu().clamp_(0, 1).numpy() | |
if output.ndim == 3: | |
output = np.transpose(output[[2, 1, 0], :, :], (1, 2, 0)) # CHW-RGB to HCW-BGR | |
output = (output * 255.0).round().astype(np.uint8) # float32 to uint8 | |
return output | |
def denoise(input_img): | |
window_size = 8 | |
# read image | |
img_lq = input_img.astype(np.float32) / 255. | |
img_lq = np.transpose(img_lq if img_lq.shape[2] == 1 else img_lq[:, :, [2, 1, 0]], (2, 0, 1)) # HCW-BGR to CHW-RGB | |
img_lq = torch.from_numpy(img_lq).float().unsqueeze(0).to(device) # CHW-RGB to NCHW-RGB | |
# inference | |
with torch.no_grad(): | |
# pad input image to be a multiple of window_size | |
_, _, h_old, w_old = img_lq.size() | |
h_pad = (h_old // window_size + 1) * window_size - h_old | |
w_pad = (w_old // window_size + 1) * window_size - w_old | |
img_lq = torch.cat([img_lq, torch.flip(img_lq, [2])], 2)[:, :, :h_old + h_pad, :] | |
img_lq = torch.cat([img_lq, torch.flip(img_lq, [3])], 3)[:, :, :, :w_old + w_pad] | |
output = denoise_model(img_lq) | |
output = output[..., :h_old * 4, :w_old * 4] | |
# save image | |
output = output.data.squeeze().float().cpu().clamp_(0, 1).numpy() | |
if output.ndim == 3: | |
output = np.transpose(output[[2, 1, 0], :, :], (1, 2, 0)) # CHW-RGB to HCW-BGR | |
output = (output * 255.0).round().astype(np.uint8) # float32 to uint8 | |
return output | |
title = " AISeed AI Application Demo " | |
description = "# A Demo of Deep Learning for Image Restoration" | |
example_list = [["examples/" + example] for example in os.listdir("examples")] | |
with gr.Blocks() as demo: | |
demo.title = title | |
gr.Markdown(description) | |
with gr.Row(): | |
with gr.Column(): | |
im = gr.Image(label="Input Image") | |
im_2 = gr.Image(label="Enhanced Image") | |
with gr.Column(): | |
btn1 = gr.Button(value="Enhance Resolution") | |
btn1.click(sr, inputs=[im], outputs=[im_2]) | |
btn2 = gr.Button(value="Denoise") | |
btn2.click(denoise, inputs=[im], outputs=[im_2]) | |
gr.Examples(examples=example_list, | |
inputs=[im], | |
outputs=[im_2]) | |
if __name__ == "__main__": | |
demo.launch() |