Spaces:
Sleeping
Sleeping
Update src/streamlit_app.py
Browse files- src/streamlit_app.py +73 -50
src/streamlit_app.py
CHANGED
|
@@ -1,50 +1,73 @@
|
|
| 1 |
-
# app.py
|
| 2 |
-
import streamlit as st
|
| 3 |
-
import pandas as pd
|
| 4 |
-
|
| 5 |
-
|
| 6 |
-
|
| 7 |
-
|
| 8 |
-
from
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
import
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
st.
|
| 34 |
-
st.
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
st.
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# app.py
|
| 2 |
+
import streamlit as st
|
| 3 |
+
import pandas as pd
|
| 4 |
+
import matplotlib.pyplot as plt
|
| 5 |
+
import seaborn as sns
|
| 6 |
+
import os
|
| 7 |
+
|
| 8 |
+
from analyze import analyze_csv
|
| 9 |
+
from plan import generate_cleaning_plan
|
| 10 |
+
from execute import execute_plan
|
| 11 |
+
from insight import generate_insights
|
| 12 |
+
from visual_insight import generate_visual_plan
|
| 13 |
+
from report import ReportBuilder
|
| 14 |
+
|
| 15 |
+
st.set_page_config(page_title="Smart Data Cleaning Agent", layout="wide")
|
| 16 |
+
st.title("π§ Smart Data Cleaning Agent")
|
| 17 |
+
|
| 18 |
+
os.makedirs("charts", exist_ok=True)
|
| 19 |
+
|
| 20 |
+
uploaded_file = st.file_uploader("π Upload a CSV file", type=["csv"])
|
| 21 |
+
|
| 22 |
+
if uploaded_file:
|
| 23 |
+
df = pd.read_csv(uploaded_file)
|
| 24 |
+
st.subheader("π Original Data Preview")
|
| 25 |
+
st.dataframe(df.head())
|
| 26 |
+
|
| 27 |
+
with st.spinner("π Analyzing CSV..."):
|
| 28 |
+
analysis = analyze_csv(uploaded_file)
|
| 29 |
+
|
| 30 |
+
with st.spinner("π§Ό Generating Cleaning Plan..."):
|
| 31 |
+
cleaning_plan, cleaning_summary = generate_cleaning_plan(analysis)
|
| 32 |
+
st.subheader("π§Ή Cleaning Plan")
|
| 33 |
+
st.json(cleaning_plan)
|
| 34 |
+
st.markdown("### β
Cleaning Summary")
|
| 35 |
+
st.markdown(cleaning_summary)
|
| 36 |
+
|
| 37 |
+
with st.spinner("π§ͺ Applying cleaning..."):
|
| 38 |
+
cleaned_df = execute_plan(df.copy(), cleaning_plan)
|
| 39 |
+
st.subheader("π§Ό Cleaned Data Preview")
|
| 40 |
+
st.dataframe(cleaned_df.head())
|
| 41 |
+
st.download_button("β¬οΈ Download Cleaned CSV", cleaned_df.to_csv(index=False), file_name="cleaned.csv")
|
| 42 |
+
|
| 43 |
+
with st.spinner("π§ Deriving insights..."):
|
| 44 |
+
insights = generate_insights(analysis["columns"])
|
| 45 |
+
st.subheader("π EDA Insights")
|
| 46 |
+
st.text(insights)
|
| 47 |
+
|
| 48 |
+
with st.spinner("π Generating recommended plots..."):
|
| 49 |
+
visuals = generate_visual_plan(analysis["columns"])
|
| 50 |
+
for vis in visuals:
|
| 51 |
+
st.markdown(f"#### {vis['title']}")
|
| 52 |
+
st.markdown(vis['description'])
|
| 53 |
+
try:
|
| 54 |
+
exec(vis["code"], {"df": cleaned_df, "plt": plt, "sns": sns, "os": os})
|
| 55 |
+
st.pyplot(plt.gcf())
|
| 56 |
+
plt.clf()
|
| 57 |
+
except Exception as e:
|
| 58 |
+
st.error(f"β Failed to render: {e}")
|
| 59 |
+
|
| 60 |
+
if st.button("π Generate PDF Report"):
|
| 61 |
+
report = ReportBuilder("report.pdf")
|
| 62 |
+
report.add_title("π Smart Data Cleaning Report")
|
| 63 |
+
report.add_text("Cleaning Summary", cleaning_summary)
|
| 64 |
+
report.add_text("EDA Insights", insights)
|
| 65 |
+
|
| 66 |
+
for vis in visuals:
|
| 67 |
+
if "savefig('" in vis['code']:
|
| 68 |
+
path = vis['code'].split("savefig('")[-1].split("')")[0]
|
| 69 |
+
report.add_image(path, vis['description'])
|
| 70 |
+
|
| 71 |
+
report.save()
|
| 72 |
+
with open("report.pdf", "rb") as f:
|
| 73 |
+
st.download_button("β¬οΈ Download PDF Report", f, file_name="smart_data_report.pdf")
|