Commit
·
7095a34
1
Parent(s):
69ab4f3
first commit
Browse files- .gitignore +7 -0
- app.py +774 -0
- images/1.png +0 -0
- images/10.png +0 -0
- images/11.png +0 -0
- images/2.png +0 -0
- images/3.png +0 -0
- images/4.png +0 -0
- images/5.png +0 -0
- images/6.png +0 -0
- images/7.png +0 -0
- images/8.png +0 -0
- images/9.png +0 -0
- requirements.txt +8 -0
.gitignore
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
*.json
|
2 |
+
mapping
|
3 |
+
*.ipynb
|
4 |
+
test.py
|
5 |
+
results/
|
6 |
+
.notebook/
|
7 |
+
__pycache__/
|
app.py
ADDED
@@ -0,0 +1,774 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import io
|
3 |
+
import base64
|
4 |
+
import librosa
|
5 |
+
import tempfile
|
6 |
+
import os
|
7 |
+
import random
|
8 |
+
from datetime import timedelta
|
9 |
+
import shutil
|
10 |
+
import csv
|
11 |
+
from audio_recorder_streamlit import audio_recorder
|
12 |
+
import pandas as pd
|
13 |
+
import plotly.express as px
|
14 |
+
import plotly.graph_objects as go
|
15 |
+
import numpy as np
|
16 |
+
import time
|
17 |
+
import re
|
18 |
+
import requests
|
19 |
+
|
20 |
+
|
21 |
+
SAVE_PATH = "results/results.csv"
|
22 |
+
TEMP_DIR = "results/audios"
|
23 |
+
|
24 |
+
if not os.path.exists("results"):
|
25 |
+
os.mkdir("results")
|
26 |
+
|
27 |
+
if not os.path.exists(SAVE_PATH):
|
28 |
+
open(SAVE_PATH,"w").close()
|
29 |
+
|
30 |
+
if not os.path.exists(TEMP_DIR):
|
31 |
+
os.mkdir(TEMP_DIR)
|
32 |
+
|
33 |
+
CREATE_TASK_URL = "https://ai-voice-test.voicegenie.ai/task"
|
34 |
+
|
35 |
+
def decode_audio_array(base64_string):
|
36 |
+
bytes_data = base64.b64decode(base64_string)
|
37 |
+
|
38 |
+
buffer = io.BytesIO(bytes_data)
|
39 |
+
audio_array = np.load(buffer)
|
40 |
+
|
41 |
+
return audio_array
|
42 |
+
|
43 |
+
def send_task(payload):
|
44 |
+
response = requests.post(CREATE_TASK_URL,json=payload)
|
45 |
+
response = response.json()
|
46 |
+
|
47 |
+
if payload["task"] == "transcribe_with_fastapi":
|
48 |
+
return response["text"]
|
49 |
+
|
50 |
+
elif payload["task"] == "fetch_audio":
|
51 |
+
array = response["array"]
|
52 |
+
array = decode_audio_array(array)
|
53 |
+
sampling_rate = response["sample_rate"]
|
54 |
+
filepath = response["filepath"]
|
55 |
+
return array,sampling_rate,filepath
|
56 |
+
|
57 |
+
def convert_seconds_to_timestamp(seconds):
|
58 |
+
time_delta = timedelta(seconds=seconds)
|
59 |
+
return str(time_delta).split('.')[0]
|
60 |
+
|
61 |
+
def transcribe_whisper(model, path):
|
62 |
+
return model.transcribe(path)["text"]
|
63 |
+
|
64 |
+
class ResultWriter:
|
65 |
+
def __init__(self, save_path):
|
66 |
+
self.save_path = save_path
|
67 |
+
self.headers = [
|
68 |
+
'email',
|
69 |
+
'path',
|
70 |
+
'Ori Apex_score', 'Ori Apex XT_score', 'deepgram_score', 'Ori Swift_score', 'Ori Prime_score',
|
71 |
+
'Ori Apex_appearance', 'Ori Apex XT_appearance', 'deepgram_appearance', 'Ori Swift_appearance', 'Ori Prime_appearance',
|
72 |
+
'Ori Apex_duration', 'Ori Apex XT_duration', 'deepgram_duration', 'Ori Swift_duration', 'Ori Prime_duration','azure_score','azure_appearance','azure_duration'
|
73 |
+
]
|
74 |
+
|
75 |
+
if not os.path.exists(save_path):
|
76 |
+
with open(save_path, 'w', newline='') as f:
|
77 |
+
writer = csv.DictWriter(f, fieldnames=self.headers)
|
78 |
+
writer.writeheader()
|
79 |
+
|
80 |
+
def write_result(self,user_email ,audio_path,option_1_duration_info,option_2_duration_info ,winner_model=None, loser_model=None, both_preferred=False, none_preferred=False):
|
81 |
+
result = {
|
82 |
+
'email': user_email,
|
83 |
+
'path': audio_path,
|
84 |
+
'Ori Apex_score': 0, 'Ori Apex XT_score': 0, 'deepgram_score': 0, 'Ori Swift_score': 0, 'Ori Prime_score': 0,
|
85 |
+
'Ori Apex_appearance': 0, 'Ori Apex XT_appearance': 0, 'deepgram_appearance': 0, 'Ori Swift_appearance': 0, 'Ori Prime_appearance': 0,
|
86 |
+
'Ori Apex_duration':0, 'Ori Apex XT_duration':0, 'deepgram_duration':0, 'Ori Swift_duration':0, 'Ori Prime_duration':0,'azure_score':0,'azure_appearance':0,'azure_duration':0
|
87 |
+
}
|
88 |
+
|
89 |
+
if winner_model:
|
90 |
+
result[f'{winner_model}_appearance'] = 1
|
91 |
+
|
92 |
+
if loser_model:
|
93 |
+
result[f'{loser_model}_appearance'] = 1
|
94 |
+
|
95 |
+
if both_preferred:
|
96 |
+
if winner_model:
|
97 |
+
result[f'{winner_model}_score'] = 1
|
98 |
+
if loser_model:
|
99 |
+
result[f'{loser_model}_score'] = 1
|
100 |
+
elif not none_preferred and winner_model:
|
101 |
+
result[f'{winner_model}_score'] = 1
|
102 |
+
|
103 |
+
if option_1_duration_info and option_1_duration_info[0]:
|
104 |
+
duration_key, duration_value = option_1_duration_info[0] # Unpack the tuple
|
105 |
+
if duration_key in self.headers:
|
106 |
+
result[duration_key] = float(duration_value)
|
107 |
+
|
108 |
+
if option_2_duration_info and option_2_duration_info[0]:
|
109 |
+
duration_key, duration_value = option_2_duration_info[0] # Unpack the tuple
|
110 |
+
if duration_key in self.headers:
|
111 |
+
result[duration_key] = float(duration_value)
|
112 |
+
|
113 |
+
with open(self.save_path, 'a', newline='\n') as f:
|
114 |
+
writer = csv.DictWriter(f, fieldnames=self.headers)
|
115 |
+
writer.writerow(result)
|
116 |
+
|
117 |
+
result_writer = ResultWriter(SAVE_PATH)
|
118 |
+
|
119 |
+
def reset_state():
|
120 |
+
st.session_state.option_1 = ""
|
121 |
+
st.session_state.option_2 = ""
|
122 |
+
st.session_state.transcribed = False
|
123 |
+
st.session_state.choice = ""
|
124 |
+
st.session_state.option_selected = False
|
125 |
+
st.session_state.current_audio_path = None
|
126 |
+
st.session_state.option_1_model_name = None
|
127 |
+
st.session_state.option_2_model_name = None
|
128 |
+
st.session_state.option_1_model_name_state = None
|
129 |
+
st.session_state.option_2_model_name_state = None
|
130 |
+
st.session_state.option_2_response_time = None
|
131 |
+
st.session_state.option_1_response_time = None
|
132 |
+
st.session_state.audio_tab = None
|
133 |
+
|
134 |
+
|
135 |
+
def process_random_file(audio_file):
|
136 |
+
models_list = ["Ori Apex", "Ori Apex XT", "deepgram", "Ori Swift", "Ori Prime","azure"]
|
137 |
+
option_1_model_name, option_2_model_name = random.sample(models_list, 2)
|
138 |
+
|
139 |
+
st.session_state.current_audio_path = audio_file
|
140 |
+
|
141 |
+
st.session_state.option_1_model_name = option_1_model_name
|
142 |
+
st.session_state.option_2_model_name = option_2_model_name
|
143 |
+
|
144 |
+
return process_normal_audio(audio_file,option_1_model_name,option_2_model_name,"loaded_models")
|
145 |
+
|
146 |
+
def process_audio_file(audio_file):
|
147 |
+
with tempfile.NamedTemporaryFile(delete=False, suffix=os.path.splitext(audio_file.name)[1]) as tmp_file:
|
148 |
+
tmp_file.write(audio_file.getvalue())
|
149 |
+
permanent_path = os.path.join(TEMP_DIR, os.path.basename(tmp_file.name))
|
150 |
+
os.makedirs(TEMP_DIR, exist_ok=True)
|
151 |
+
shutil.move(tmp_file.name, permanent_path)
|
152 |
+
|
153 |
+
st.session_state.current_audio_path = permanent_path
|
154 |
+
|
155 |
+
models_list = ["Ori Apex", "Ori Apex XT", "deepgram", "Ori Swift", "Ori Prime","azure"]
|
156 |
+
option_1_model_name, option_2_model_name = random.sample(models_list, 2)
|
157 |
+
|
158 |
+
st.session_state.option_1_model_name = option_1_model_name
|
159 |
+
st.session_state.option_2_model_name = option_2_model_name
|
160 |
+
|
161 |
+
return process_normal_audio(permanent_path, option_1_model_name, option_2_model_name, "loaded_models")
|
162 |
+
|
163 |
+
def encode_audio_array(audio_array):
|
164 |
+
buffer = io.BytesIO()
|
165 |
+
np.save(buffer, audio_array)
|
166 |
+
buffer.seek(0)
|
167 |
+
|
168 |
+
base64_bytes = base64.b64encode(buffer.read())
|
169 |
+
base64_string = base64_bytes.decode('utf-8')
|
170 |
+
|
171 |
+
return base64_string
|
172 |
+
|
173 |
+
def call_function(model_name,audio_path):
|
174 |
+
if st.session_state.audio_tab:
|
175 |
+
y,_ = librosa.load(audio_path,sr=22050,mono=True)
|
176 |
+
encoded_array = encode_audio_array(y)
|
177 |
+
payload = {
|
178 |
+
"task":"transcribe_with_fastapi",
|
179 |
+
"payload":{
|
180 |
+
"file_path":encoded_array,
|
181 |
+
"model_name":model_name,
|
182 |
+
"audio_b64":True
|
183 |
+
}}
|
184 |
+
else:
|
185 |
+
payload = {
|
186 |
+
"task":"transcribe_with_fastapi",
|
187 |
+
"payload":{
|
188 |
+
"file_path":audio_path,
|
189 |
+
"model_name":model_name,
|
190 |
+
"audio_b64":False
|
191 |
+
}}
|
192 |
+
|
193 |
+
transcript = send_task(payload)
|
194 |
+
return transcript
|
195 |
+
|
196 |
+
|
197 |
+
|
198 |
+
def process_normal_audio(audio_path, model1_name, model2_name, loaded_models):
|
199 |
+
time_1 = time.time()
|
200 |
+
transcript1 = call_function(model1_name,audio_path)
|
201 |
+
time_2 = time.time()
|
202 |
+
transcript2 = call_function(model2_name,audio_path)
|
203 |
+
time_3 = time.time()
|
204 |
+
|
205 |
+
st.session_state.option_2_response_time = round(time_3 - time_2,3)
|
206 |
+
st.session_state.option_1_response_time = round(time_2 - time_1,3)
|
207 |
+
|
208 |
+
return transcript1, transcript2
|
209 |
+
|
210 |
+
def process_recorded_audio(audio_bytes):
|
211 |
+
with tempfile.NamedTemporaryFile(delete=False, suffix='.wav') as tmp_file:
|
212 |
+
tmp_file.write(audio_bytes)
|
213 |
+
permanent_path = os.path.join(TEMP_DIR, f"recorded_{os.path.basename(tmp_file.name)}")
|
214 |
+
os.makedirs(TEMP_DIR, exist_ok=True)
|
215 |
+
shutil.move(tmp_file.name, permanent_path)
|
216 |
+
|
217 |
+
st.session_state.current_audio_path = permanent_path
|
218 |
+
|
219 |
+
models_list = ["Ori Apex", "Ori Apex XT", "deepgram", "Ori Swift", "Ori Prime","azure"]
|
220 |
+
option_1_model_name, option_2_model_name = random.sample(models_list, 2)
|
221 |
+
|
222 |
+
st.session_state.option_1_model_name = option_1_model_name
|
223 |
+
st.session_state.option_2_model_name = option_2_model_name
|
224 |
+
|
225 |
+
# loaded_models = load_models()
|
226 |
+
|
227 |
+
return process_normal_audio(permanent_path, option_1_model_name, option_2_model_name, "loaded_models")
|
228 |
+
|
229 |
+
def get_model_abbreviation(model_name):
|
230 |
+
abbrev_map = {
|
231 |
+
'Ori Apex': 'Ori Apex',
|
232 |
+
'Ori Apex XT': 'Ori Apex XT',
|
233 |
+
'deepgram': 'DG',
|
234 |
+
'Ori Swift': 'Ori Swift',
|
235 |
+
'Ori Prime': 'Ori Prime',
|
236 |
+
'azure' : 'Azure'
|
237 |
+
}
|
238 |
+
return abbrev_map.get(model_name, model_name)
|
239 |
+
|
240 |
+
|
241 |
+
def calculate_metrics(df):
|
242 |
+
models = ['Ori Apex', 'Ori Apex XT', 'deepgram', 'Ori Swift', 'Ori Prime', 'azure']
|
243 |
+
metrics = {}
|
244 |
+
|
245 |
+
for model in models:
|
246 |
+
appearances = df[f'{model}_appearance'].sum()
|
247 |
+
wins = df[f'{model}_score'].sum()
|
248 |
+
durations = df[df[f'{model}_appearance'] == 1][f'{model}_duration']
|
249 |
+
|
250 |
+
if appearances > 0:
|
251 |
+
win_rate = (wins / appearances) * 100
|
252 |
+
avg_duration = durations.mean()
|
253 |
+
duration_std = durations.std()
|
254 |
+
else:
|
255 |
+
win_rate = 0
|
256 |
+
avg_duration = 0
|
257 |
+
duration_std = 0
|
258 |
+
|
259 |
+
metrics[model] = {
|
260 |
+
'appearances': appearances,
|
261 |
+
'wins': wins,
|
262 |
+
'win_rate': win_rate,
|
263 |
+
'avg_response_time': avg_duration,
|
264 |
+
'response_time_std': duration_std
|
265 |
+
}
|
266 |
+
|
267 |
+
return metrics
|
268 |
+
|
269 |
+
def create_win_rate_chart(metrics):
|
270 |
+
models = list(metrics.keys())
|
271 |
+
win_rates = [metrics[model]['win_rate'] for model in models]
|
272 |
+
|
273 |
+
fig = go.Figure(data=[
|
274 |
+
go.Bar(
|
275 |
+
x=[get_model_abbreviation(model) for model in models],
|
276 |
+
y=win_rates,
|
277 |
+
text=[f'{rate:.1f}%' for rate in win_rates],
|
278 |
+
textposition='auto',
|
279 |
+
hovertext=models
|
280 |
+
)
|
281 |
+
])
|
282 |
+
|
283 |
+
fig.update_layout(
|
284 |
+
title='Win Rate by Model',
|
285 |
+
xaxis_title='Model',
|
286 |
+
yaxis_title='Win Rate (%)',
|
287 |
+
yaxis_range=[0, 100]
|
288 |
+
)
|
289 |
+
|
290 |
+
return fig
|
291 |
+
|
292 |
+
def create_appearance_chart(metrics):
|
293 |
+
models = list(metrics.keys())
|
294 |
+
appearances = [metrics[model]['appearances'] for model in models]
|
295 |
+
|
296 |
+
fig = px.pie(
|
297 |
+
values=appearances,
|
298 |
+
names=[get_model_abbreviation(model) for model in models],
|
299 |
+
title='Model Appearances Distribution',
|
300 |
+
hover_data=[models]
|
301 |
+
)
|
302 |
+
|
303 |
+
return fig
|
304 |
+
|
305 |
+
def create_head_to_head_matrix(df):
|
306 |
+
models = ['Ori Apex', 'Ori Apex XT', 'deepgram', 'Ori Swift', 'Ori Prime', 'azure']
|
307 |
+
matrix = np.zeros((len(models), len(models)))
|
308 |
+
|
309 |
+
for i, model1 in enumerate(models):
|
310 |
+
for j, model2 in enumerate(models):
|
311 |
+
if i != j:
|
312 |
+
matches = df[
|
313 |
+
(df[f'{model1}_appearance'] == 1) &
|
314 |
+
(df[f'{model2}_appearance'] == 1)
|
315 |
+
]
|
316 |
+
if len(matches) > 0:
|
317 |
+
win_rate = (matches[f'{model1}_score'].sum() / len(matches)) * 100
|
318 |
+
matrix[i][j] = win_rate
|
319 |
+
|
320 |
+
fig = go.Figure(data=go.Heatmap(
|
321 |
+
z=matrix,
|
322 |
+
x=[get_model_abbreviation(model) for model in models],
|
323 |
+
y=[get_model_abbreviation(model) for model in models],
|
324 |
+
text=[[f'{val:.1f}%' if val > 0 else '' for val in row] for row in matrix],
|
325 |
+
texttemplate='%{text}',
|
326 |
+
colorscale='RdYlBu',
|
327 |
+
zmin=0,
|
328 |
+
zmax=100
|
329 |
+
))
|
330 |
+
|
331 |
+
fig.update_layout(
|
332 |
+
title='Head-to-Head Win Rates',
|
333 |
+
xaxis_title='Opponent Model',
|
334 |
+
yaxis_title='Model'
|
335 |
+
)
|
336 |
+
|
337 |
+
return fig
|
338 |
+
|
339 |
+
def create_metric_container(label, value, full_name=None):
|
340 |
+
container = st.container()
|
341 |
+
with container:
|
342 |
+
st.markdown(f"**{label}**")
|
343 |
+
if full_name:
|
344 |
+
st.markdown(f"<h3 style='margin-top: 0;'>{value}</h3>", unsafe_allow_html=True)
|
345 |
+
st.caption(f"Full name: {full_name}")
|
346 |
+
else:
|
347 |
+
st.markdown(f"<h3 style='margin-top: 0;'>{value}</h3>", unsafe_allow_html=True)
|
348 |
+
|
349 |
+
def on_option_1_click():
|
350 |
+
if st.session_state.transcribed and not st.session_state.option_selected:
|
351 |
+
st.session_state.option_1_model_name_state = f"👑 {st.session_state.option_1_model_name} 👑"
|
352 |
+
st.session_state.option_2_model_name_state = f"👎 {st.session_state.option_2_model_name} 👎"
|
353 |
+
st.session_state.choice = f"You chose Option 1. Option 1 was {st.session_state.option_1_model_name} Option 2 was {st.session_state.option_2_model_name}"
|
354 |
+
result_writer.write_result(
|
355 |
+
st.session_state.user_email,
|
356 |
+
st.session_state.current_audio_path,
|
357 |
+
winner_model=st.session_state.option_1_model_name,
|
358 |
+
loser_model=st.session_state.option_2_model_name,
|
359 |
+
option_1_duration_info=[(f"{st.session_state.option_1_model_name}_duration",st.session_state.option_1_response_time)],
|
360 |
+
option_2_duration_info=[(f"{st.session_state.option_2_model_name}_duration",st.session_state.option_2_response_time)]
|
361 |
+
)
|
362 |
+
st.session_state.option_selected = True
|
363 |
+
|
364 |
+
def on_option_2_click():
|
365 |
+
if st.session_state.transcribed and not st.session_state.option_selected:
|
366 |
+
st.session_state.option_2_model_name_state = f"👑 {st.session_state.option_2_model_name} 👑"
|
367 |
+
st.session_state.option_1_model_name_state = f"👎 {st.session_state.option_1_model_name} 👎"
|
368 |
+
st.session_state.choice = f"You chose Option 2. Option 1 was {st.session_state.option_1_model_name} Option 2 was {st.session_state.option_2_model_name}"
|
369 |
+
result_writer.write_result(
|
370 |
+
st.session_state.user_email,
|
371 |
+
st.session_state.current_audio_path,
|
372 |
+
winner_model=st.session_state.option_2_model_name,
|
373 |
+
loser_model=st.session_state.option_1_model_name,
|
374 |
+
option_1_duration_info=[(f"{st.session_state.option_1_model_name}_duration",st.session_state.option_1_response_time)],
|
375 |
+
option_2_duration_info=[(f"{st.session_state.option_2_model_name}_duration",st.session_state.option_2_response_time)]
|
376 |
+
)
|
377 |
+
st.session_state.option_selected = True
|
378 |
+
|
379 |
+
def on_option_both_click():
|
380 |
+
if st.session_state.transcribed and not st.session_state.option_selected:
|
381 |
+
st.session_state.option_2_model_name_state = f"👑 {st.session_state.option_2_model_name} 👑"
|
382 |
+
st.session_state.option_1_model_name_state = f"👑 {st.session_state.option_1_model_name} 👑"
|
383 |
+
st.session_state.choice = f"You chose Prefer both. Option 1 was {st.session_state.option_1_model_name} Option 2 was {st.session_state.option_2_model_name}"
|
384 |
+
result_writer.write_result(
|
385 |
+
st.session_state.user_email,
|
386 |
+
st.session_state.current_audio_path,
|
387 |
+
winner_model=st.session_state.option_1_model_name,
|
388 |
+
loser_model=st.session_state.option_2_model_name,
|
389 |
+
option_1_duration_info=[(f"{st.session_state.option_1_model_name}_duration",st.session_state.option_1_response_time)],
|
390 |
+
option_2_duration_info=[(f"{st.session_state.option_2_model_name}_duration",st.session_state.option_2_response_time)],
|
391 |
+
both_preferred=True
|
392 |
+
)
|
393 |
+
st.session_state.option_selected = True
|
394 |
+
|
395 |
+
def on_option_none_click():
|
396 |
+
if st.session_state.transcribed and not st.session_state.option_selected:
|
397 |
+
st.session_state.option_1_model_name_state = f"👎 {st.session_state.option_1_model_name} 👎"
|
398 |
+
st.session_state.option_2_model_name_state = f"👎 {st.session_state.option_2_model_name} 👎"
|
399 |
+
st.session_state.choice = f"You chose none option. Option 1 was {st.session_state.option_1_model_name} Option 2 was {st.session_state.option_2_model_name}"
|
400 |
+
result_writer.write_result(
|
401 |
+
st.session_state.user_email,
|
402 |
+
st.session_state.current_audio_path,
|
403 |
+
winner_model=st.session_state.option_1_model_name,
|
404 |
+
loser_model=st.session_state.option_2_model_name,
|
405 |
+
option_1_duration_info=[(f"{st.session_state.option_1_model_name}_duration",st.session_state.option_1_response_time)],
|
406 |
+
option_2_duration_info=[(f"{st.session_state.option_2_model_name}_duration",st.session_state.option_2_response_time)],
|
407 |
+
none_preferred=True
|
408 |
+
)
|
409 |
+
st.session_state.option_selected = True
|
410 |
+
|
411 |
+
def on_reset_click():
|
412 |
+
st.session_state.choice = ""
|
413 |
+
st.session_state.option_selected = False
|
414 |
+
reset_state()
|
415 |
+
|
416 |
+
def arena():
|
417 |
+
if 'logged_in' not in st.session_state:
|
418 |
+
st.session_state.logged_in = False
|
419 |
+
|
420 |
+
if st.session_state.logged_in:
|
421 |
+
|
422 |
+
# load_models()
|
423 |
+
st.title("⚔️ Ori Speech-To-Text Arena ⚔️")
|
424 |
+
|
425 |
+
if 'option_1' not in st.session_state:
|
426 |
+
st.session_state.option_1 = ""
|
427 |
+
if 'option_2' not in st.session_state:
|
428 |
+
st.session_state.option_2 = ""
|
429 |
+
if 'transcribed' not in st.session_state:
|
430 |
+
st.session_state.transcribed = False
|
431 |
+
if 'choice' not in st.session_state:
|
432 |
+
st.session_state.choice = ""
|
433 |
+
if 'option_selected' not in st.session_state:
|
434 |
+
st.session_state.option_selected = False
|
435 |
+
if 'current_file_id' not in st.session_state:
|
436 |
+
st.session_state.current_file_id = None
|
437 |
+
if 'current_audio_path' not in st.session_state:
|
438 |
+
st.session_state.current_audio_path = None
|
439 |
+
if "option_1_model_name" not in st.session_state:
|
440 |
+
st.session_state.option_1_model_name = None
|
441 |
+
if "option_2_model_name" not in st.session_state:
|
442 |
+
st.session_state.option_2_model_name = None
|
443 |
+
if "last_recorded_audio" not in st.session_state:
|
444 |
+
st.session_state.last_recorded_audio = None
|
445 |
+
if "last_random_audio" not in st.session_state:
|
446 |
+
st.session_state.last_random_audio = None
|
447 |
+
if "option_1_model_name_state" not in st.session_state:
|
448 |
+
st.session_state.option_1_model_name_state = None
|
449 |
+
if "option_2_model_name_state" not in st.session_state:
|
450 |
+
st.session_state.option_2_model_name_state = None
|
451 |
+
if "option_1_response_time" not in st.session_state:
|
452 |
+
st.session_state.option_1_response_time = None
|
453 |
+
if "option_2_response_time" not in st.session_state:
|
454 |
+
st.session_state.option_2_response_time = None
|
455 |
+
if "audio_tab" not in st.session_state:
|
456 |
+
st.session_state.audio_tab = None
|
457 |
+
|
458 |
+
tab2, tab3,tab4 = st.tabs(["Upload Audio", "Record Audio","Random Audio Example"])
|
459 |
+
|
460 |
+
with tab2:
|
461 |
+
normal_audio = st.file_uploader("Upload Normal Audio File", type=['wav', 'mp3'], key='normal_audio')
|
462 |
+
if normal_audio:
|
463 |
+
if st.session_state.get('last_normal_file') != normal_audio.name:
|
464 |
+
reset_state()
|
465 |
+
st.session_state.last_normal_file = normal_audio.name
|
466 |
+
st.session_state.current_file_id = normal_audio.name
|
467 |
+
|
468 |
+
st.audio(normal_audio)
|
469 |
+
|
470 |
+
if st.button("Transcribe File"):
|
471 |
+
reset_state()
|
472 |
+
st.session_state.choice = ""
|
473 |
+
st.session_state.option_selected = False
|
474 |
+
st.session_state.audio_tab = "Upload"
|
475 |
+
option_1_text, option_2_text = process_audio_file(normal_audio)
|
476 |
+
st.session_state.option_1 = option_1_text
|
477 |
+
st.session_state.option_2 = option_2_text
|
478 |
+
st.session_state.transcribed = True
|
479 |
+
|
480 |
+
with tab3:
|
481 |
+
audio_bytes = audio_recorder(text="Click 🎙️ to record ((Recording active when icon is red))",pause_threshold=3,icon_size="2x")
|
482 |
+
|
483 |
+
if audio_bytes and audio_bytes != st.session_state.last_recorded_audio:
|
484 |
+
reset_state()
|
485 |
+
st.session_state.last_recorded_audio = audio_bytes
|
486 |
+
st.session_state.current_file_id = "recorded_audio"
|
487 |
+
|
488 |
+
st.audio(audio_bytes, format='audio/wav')
|
489 |
+
|
490 |
+
if st.button("Transcribe Recorded Audio"):
|
491 |
+
if audio_bytes:
|
492 |
+
reset_state()
|
493 |
+
st.session_state.choice = ""
|
494 |
+
st.session_state.option_selected = False
|
495 |
+
st.session_state.audio_tab = "Upload"
|
496 |
+
option_1_text, option_2_text = process_recorded_audio(audio_bytes)
|
497 |
+
st.session_state.option_1 = option_1_text
|
498 |
+
st.session_state.option_2 = option_2_text
|
499 |
+
st.session_state.transcribed = True
|
500 |
+
|
501 |
+
with tab4:
|
502 |
+
fetch_audio_payload = {
|
503 |
+
"task":"fetch_audio"
|
504 |
+
}
|
505 |
+
array,sampling_rate,filepath = send_task(fetch_audio_payload)
|
506 |
+
if "current_random_audio" not in st.session_state:
|
507 |
+
st.session_state.current_random_audio = filepath
|
508 |
+
if "current_array" not in st.session_state:
|
509 |
+
st.session_state.current_array = array
|
510 |
+
if "current_sampling_rate" not in st.session_state:
|
511 |
+
st.session_state.current_sampling_rate = sampling_rate
|
512 |
+
|
513 |
+
if "current_random_audio" not in st.session_state:
|
514 |
+
st.session_state.current_random_audio = filepath
|
515 |
+
|
516 |
+
if st.button("Next File"):
|
517 |
+
reset_state()
|
518 |
+
fetch_audio_payload = {
|
519 |
+
"task":"fetch_audio"
|
520 |
+
}
|
521 |
+
array,sampling_rate,filepath = send_task(fetch_audio_payload)
|
522 |
+
st.session_state.current_random_audio = filepath
|
523 |
+
st.session_state.current_array = array
|
524 |
+
st.session_state.current_sampling_rate = sampling_rate
|
525 |
+
st.session_state.last_random_audio = None
|
526 |
+
|
527 |
+
audio = st.session_state.current_random_audio
|
528 |
+
|
529 |
+
if audio and audio != st.session_state.last_random_audio:
|
530 |
+
st.session_state.choice = ""
|
531 |
+
st.session_state.option_selected = False
|
532 |
+
st.session_state.last_random_audio = audio
|
533 |
+
st.session_state.current_file_id = audio
|
534 |
+
|
535 |
+
st.audio(data=st.session_state.current_array,
|
536 |
+
sample_rate=st.session_state.current_sampling_rate,
|
537 |
+
format="audio/wav")
|
538 |
+
|
539 |
+
if st.button("Transcribe Random Audio"):
|
540 |
+
if audio:
|
541 |
+
st.session_state.option_selected = False
|
542 |
+
option_1_text, option_2_text = process_random_file(audio)
|
543 |
+
st.session_state.option_1 = option_1_text
|
544 |
+
st.session_state.option_2 = option_2_text
|
545 |
+
st.session_state.transcribed = True
|
546 |
+
|
547 |
+
text_containers = st.columns([1, 1])
|
548 |
+
name_containers = st.columns([1, 1])
|
549 |
+
|
550 |
+
with text_containers[0]:
|
551 |
+
st.text_area("Option 1", value=st.session_state.option_1, height=300)
|
552 |
+
|
553 |
+
with text_containers[1]:
|
554 |
+
st.text_area("Option 2", value=st.session_state.option_2, height=300)
|
555 |
+
|
556 |
+
with name_containers[0]:
|
557 |
+
if st.session_state.option_1_model_name_state:
|
558 |
+
st.markdown(f"<div style='text-align: center'>{st.session_state.option_1_model_name_state}</div>", unsafe_allow_html=True)
|
559 |
+
|
560 |
+
with name_containers[1]:
|
561 |
+
if st.session_state.option_2_model_name_state:
|
562 |
+
st.markdown(f"<div style='text-align: center'>{st.session_state.option_2_model_name_state}</div>", unsafe_allow_html=True)
|
563 |
+
|
564 |
+
c1, c2, c3, c4 = st.columns(4)
|
565 |
+
|
566 |
+
with c1:
|
567 |
+
st.button("Prefer Option 1",on_click=on_option_1_click)
|
568 |
+
|
569 |
+
with c2:
|
570 |
+
st.button("Prefer Option 2",on_click=on_option_2_click)
|
571 |
+
|
572 |
+
with c3:
|
573 |
+
st.button("Prefer Both",on_click=on_option_both_click)
|
574 |
+
|
575 |
+
with c4:
|
576 |
+
st.button("Prefer None",on_click=on_option_none_click)
|
577 |
+
|
578 |
+
|
579 |
+
st.button("Reset Choice",on_click=on_reset_click)
|
580 |
+
|
581 |
+
else:
|
582 |
+
st.write('You have not entered your email and name yet')
|
583 |
+
st.write('Please Navigate to login page in the dropdown menu')
|
584 |
+
|
585 |
+
|
586 |
+
def dashboard():
|
587 |
+
if 'logged_in' not in st.session_state:
|
588 |
+
st.session_state.logged_in = False
|
589 |
+
|
590 |
+
if st.session_state.logged_in:
|
591 |
+
st.title('Model Arena Scoreboard')
|
592 |
+
|
593 |
+
df = pd.read_csv(SAVE_PATH)
|
594 |
+
metrics = calculate_metrics(df)
|
595 |
+
|
596 |
+
MODEL_DESCRIPTIONS = {
|
597 |
+
"Ori Prime": "Foundational, large, and stable.",
|
598 |
+
"Ori Swift": "Lighter and faster than Ori Prime.",
|
599 |
+
"Ori Apex": "The top-performing model, fast and stable.",
|
600 |
+
"Ori Apex XT": "Enhanced with more training, though slightly less stable than Ori Apex.",
|
601 |
+
"DG" : "Deepgram Nova-2 API",
|
602 |
+
"Azure" : "Azure Speech Services API"
|
603 |
+
}
|
604 |
+
|
605 |
+
st.header('Model Descriptions')
|
606 |
+
|
607 |
+
cols = st.columns(2)
|
608 |
+
for idx, (model, description) in enumerate(MODEL_DESCRIPTIONS.items()):
|
609 |
+
with cols[idx % 2]:
|
610 |
+
st.markdown(f"""
|
611 |
+
<div style='padding: 1rem; border: 1px solid #e1e4e8; border-radius: 6px; margin-bottom: 1rem;'>
|
612 |
+
<h3 style='margin: 0; margin-bottom: 0.5rem;'>{model}</h3>
|
613 |
+
<p style='margin: 0; color: #6e7681;'>{description}</p>
|
614 |
+
</div>
|
615 |
+
""", unsafe_allow_html=True)
|
616 |
+
|
617 |
+
st.header('Overall Performance')
|
618 |
+
|
619 |
+
col1, col2, col3= st.columns(3)
|
620 |
+
|
621 |
+
with col1:
|
622 |
+
create_metric_container("Total Matches", len(df))
|
623 |
+
|
624 |
+
best_model = max(metrics.items(), key=lambda x: x[1]['win_rate'])[0]
|
625 |
+
with col2:
|
626 |
+
create_metric_container(
|
627 |
+
"Best Model",
|
628 |
+
get_model_abbreviation(best_model),
|
629 |
+
full_name=best_model
|
630 |
+
)
|
631 |
+
|
632 |
+
most_appearances = max(metrics.items(), key=lambda x: x[1]['appearances'])[0]
|
633 |
+
with col3:
|
634 |
+
create_metric_container(
|
635 |
+
"Most Used",
|
636 |
+
get_model_abbreviation(most_appearances),
|
637 |
+
full_name=most_appearances
|
638 |
+
)
|
639 |
+
|
640 |
+
st.header('Win Rates')
|
641 |
+
win_rate_chart = create_win_rate_chart(metrics)
|
642 |
+
st.plotly_chart(win_rate_chart, use_container_width=True)
|
643 |
+
|
644 |
+
st.header('Appearance Distribution')
|
645 |
+
appearance_chart = create_appearance_chart(metrics)
|
646 |
+
st.plotly_chart(appearance_chart, use_container_width=True)
|
647 |
+
|
648 |
+
st.header('Head-to-Head Analysis')
|
649 |
+
matrix_chart = create_head_to_head_matrix(df)
|
650 |
+
st.plotly_chart(matrix_chart, use_container_width=True)
|
651 |
+
|
652 |
+
st.header('Detailed Metrics')
|
653 |
+
metrics_df = pd.DataFrame.from_dict(metrics, orient='index')
|
654 |
+
metrics_df['win_rate'] = metrics_df['win_rate'].round(2)
|
655 |
+
metrics_df.drop(["avg_response_time","response_time_std"],axis=1,inplace=True)
|
656 |
+
# metrics_df['avg_response_time'] = metrics_df['avg_response_time'].round(3)
|
657 |
+
metrics_df.index = [get_model_abbreviation(model) for model in metrics_df.index]
|
658 |
+
st.dataframe(metrics_df)
|
659 |
+
|
660 |
+
st.header('Full Dataframe')
|
661 |
+
df = df.drop('path', axis=1)
|
662 |
+
df = df.drop(['Ori Apex_duration', 'Ori Apex XT_duration', 'deepgram_duration', 'Ori Swift_duration', 'Ori Prime_duration','azure_duration','email'],axis=1)
|
663 |
+
st.dataframe(df)
|
664 |
+
else:
|
665 |
+
st.write('You have not entered your email and name yet')
|
666 |
+
st.write('Please Navigate to login page in the dropdown menu')
|
667 |
+
|
668 |
+
def help():
|
669 |
+
st.title("Help")
|
670 |
+
|
671 |
+
st.markdown(
|
672 |
+
"""
|
673 |
+
# Ori Speech-To-Text Arena
|
674 |
+
|
675 |
+
## Introduction
|
676 |
+
|
677 |
+
Below are the general instructions for participating in the Ori Speech-To-Text Arena.
|
678 |
+
|
679 |
+
## Options:
|
680 |
+
There are three options for participating in the Ori Speech-To-Text Arena:
|
681 |
+
|
682 |
+
1. Compare different model by uploading your own audio file and submit it to the Arena
|
683 |
+
2. Compare different model by recording your own audio file and submit it to the Arena
|
684 |
+
3. Choose and compare from one of our randomly selected audio files
|
685 |
+
|
686 |
+
### 1. Compare different model by uploading your own audio file and submit it to the Arena
|
687 |
+
|
688 |
+
Steps:
|
689 |
+
1. Select the upload audio file option
|
690 |
+
""")
|
691 |
+
|
692 |
+
st.image("./images/1.png")
|
693 |
+
st.image("./images/2.png")
|
694 |
+
st.image("./images/3.png")
|
695 |
+
st.image("./images/4.png")
|
696 |
+
|
697 |
+
st.markdown("""
|
698 |
+
### 2. Compare different model by recording your own audio file and submit it to the Arena
|
699 |
+
|
700 |
+
Steps:
|
701 |
+
1. Select the record audio file option
|
702 |
+
""")
|
703 |
+
|
704 |
+
st.image("./images/5.png")
|
705 |
+
st.image("./images/6.png")
|
706 |
+
st.image("./images/7.png")
|
707 |
+
|
708 |
+
st.markdown("""
|
709 |
+
4. Rest of the steps remain same as above
|
710 |
+
|
711 |
+
### 3. Choose and compare from one of our randomly selected audio files
|
712 |
+
|
713 |
+
Steps:
|
714 |
+
1. Select the random audio file option
|
715 |
+
""")
|
716 |
+
|
717 |
+
st.image("./images/8.png")
|
718 |
+
st.image("./images/9.png")
|
719 |
+
|
720 |
+
st.markdown("""
|
721 |
+
4. Rest of the steps remain same as above
|
722 |
+
""")
|
723 |
+
|
724 |
+
st.image("./images/10.png")
|
725 |
+
|
726 |
+
def validate_email(email):
|
727 |
+
pattern = r'^[a-zA-Z0-9._%+-]+@[a-zA-Z0-9.-]+\.[a-zA-Z]{2,}$'
|
728 |
+
return re.match(pattern, email) is not None
|
729 |
+
|
730 |
+
def validate_name(name):
|
731 |
+
pattern = r'^[a-zA-Z\s-]{2,}$'
|
732 |
+
return re.match(pattern, name) is not None
|
733 |
+
|
734 |
+
def create_login_page():
|
735 |
+
st.title("Welcome to the App")
|
736 |
+
|
737 |
+
if 'logged_in' not in st.session_state:
|
738 |
+
st.session_state.logged_in = False
|
739 |
+
|
740 |
+
if not st.session_state.logged_in:
|
741 |
+
with st.form("login_form"):
|
742 |
+
st.subheader("Please Login")
|
743 |
+
|
744 |
+
email = st.text_input("Email")
|
745 |
+
name = st.text_input("Name")
|
746 |
+
|
747 |
+
submit_button = st.form_submit_button("Login")
|
748 |
+
|
749 |
+
if submit_button:
|
750 |
+
if not email or not name:
|
751 |
+
st.error("Please fill in all fields")
|
752 |
+
else:
|
753 |
+
if not validate_email(email):
|
754 |
+
st.error("Please enter a valid email address")
|
755 |
+
elif not validate_name(name):
|
756 |
+
st.error("Please enter a valid name (letters, spaces, and hyphens only)")
|
757 |
+
else:
|
758 |
+
st.session_state.logged_in = True
|
759 |
+
st.session_state.user_email = email
|
760 |
+
st.session_state.user_name = name
|
761 |
+
st.success("Login successful! You can now navigate to the Arena using the dropdown in the sidebar")
|
762 |
+
else:
|
763 |
+
st.success("You have already logged in. You can now navigate to the Arena using the dropdown in the sidebar")
|
764 |
+
|
765 |
+
|
766 |
+
page_names_to_funcs = {
|
767 |
+
"Login" : create_login_page,
|
768 |
+
"Arena": arena,
|
769 |
+
"Scoreboard": dashboard,
|
770 |
+
"Help": help
|
771 |
+
}
|
772 |
+
|
773 |
+
demo_name = st.sidebar.selectbox("Choose a View\nTo view the help page choose the help view", page_names_to_funcs.keys())
|
774 |
+
page_names_to_funcs[demo_name]()
|
images/1.png
ADDED
![]() |
images/10.png
ADDED
![]() |
images/11.png
ADDED
![]() |
images/2.png
ADDED
![]() |
images/3.png
ADDED
![]() |
images/4.png
ADDED
![]() |
images/5.png
ADDED
![]() |
images/6.png
ADDED
![]() |
images/7.png
ADDED
![]() |
images/8.png
ADDED
![]() |
images/9.png
ADDED
![]() |
requirements.txt
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
audio-recorder-streamlit==0.0.10
|
2 |
+
librosa
|
3 |
+
numpy==1.26.4
|
4 |
+
pandas==2.2.3
|
5 |
+
plotly==5.24.1
|
6 |
+
requests==2.32.3
|
7 |
+
scipy
|
8 |
+
streamlit==1.40.2
|