Reqxtract-v2 / app.py
om4r932's picture
Pull last commit app.py
c1faac1
raw
history blame
16.4 kB
from bs4 import BeautifulSoup
import warnings
import io
import zipfile
from lxml import etree
import os
from dotenv import load_dotenv
import requests
import subprocess
import string
from nltk.tokenize import word_tokenize
from nltk.corpus import stopwords
from nltk.stem import WordNetLemmatizer
from concurrent.futures import ThreadPoolExecutor, as_completed
import json
import traceback
from fastapi import FastAPI, BackgroundTasks, HTTPException
from fastapi.staticfiles import StaticFiles
from schemas import *
from fastapi.middleware.cors import CORSMiddleware
from fastapi.responses import FileResponse, StreamingResponse
from litellm.router import Router
from aiolimiter import AsyncLimiter
import pandas as pd
import asyncio
import logging
import re
import nltk
load_dotenv()
logging.basicConfig(
level=logging.INFO,
format='[%(asctime)s][%(levelname)s][%(filename)s:%(lineno)d]: %(message)s',
datefmt='%Y-%m-%d %H:%M:%S'
)
nltk.download('stopwords')
nltk.download('punkt_tab')
nltk.download('wordnet')
warnings.filterwarnings("ignore")
app = FastAPI(title="Requirements Extractor")
app.mount("/static", StaticFiles(directory="static"), name="static")
app.add_middleware(CORSMiddleware, allow_credentials=True, allow_headers=[
"*"], allow_methods=["*"], allow_origins=["*"])
llm_router = Router(model_list=[
{
"model_name": "gemini-v1",
"litellm_params":
{
"model": "gemini/gemini-2.0-flash",
"api_key": os.environ.get("GEMINI"),
"max_retries": 10,
"rpm": 15,
"allowed_fails": 1,
"cooldown": 30,
}
},
{
"model_name": "gemini-v2",
"litellm_params":
{
"model": "gemini/gemini-2.5-flash",
"api_key": os.environ.get("GEMINI"),
"max_retries": 10,
"rpm": 10,
"allowed_fails": 1,
"cooldown": 30,
}
}], fallbacks=[{"gemini-v2": ["gemini-v1"]}], num_retries=10, retry_after=30)
limiter_mapping = {
model["model_name"]: AsyncLimiter(model["litellm_params"]["rpm"], 60)
for model in llm_router.model_list
}
lemmatizer = WordNetLemmatizer()
NSMAP = {
'w': 'http://schemas.openxmlformats.org/wordprocessingml/2006/main',
'v': 'urn:schemas-microsoft-com:vml'
}
def lemma(text: str):
stop_words = set(stopwords.words('english'))
txt = text.translate(str.maketrans('', '', string.punctuation)).strip()
tokens = [token for token in word_tokenize(
txt.lower()) if token not in stop_words]
return [lemmatizer.lemmatize(token) for token in tokens]
def get_docx_archive(url: str) -> zipfile.ZipFile:
"""Récupère le docx depuis l'URL et le retourne comme objet ZipFile"""
if not url.endswith("zip"):
raise ValueError("URL doit pointer vers un fichier ZIP")
doc_id = os.path.splitext(os.path.basename(url))[0]
resp = requests.get(url, verify=False, headers={
"User-Agent": 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36'
})
resp.raise_for_status()
with zipfile.ZipFile(io.BytesIO(resp.content)) as zf:
for file_name in zf.namelist():
if file_name.endswith(".docx"):
docx_bytes = zf.read(file_name)
return zipfile.ZipFile(io.BytesIO(docx_bytes))
elif file_name.endswith(".doc"):
input_path = f"/tmp/{doc_id}.doc"
output_path = f"/tmp/{doc_id}.docx"
docx_bytes = zf.read(file_name)
with open(input_path, "wb") as f:
f.write(docx_bytes)
subprocess.run([
"libreoffice",
"--headless",
"--convert-to", "docx",
"--outdir", "/tmp",
input_path
], check=True)
with open(output_path, "rb") as f:
docx_bytes = f.read()
os.remove(input_path)
os.remove(output_path)
return zipfile.ZipFile(io.BytesIO(docx_bytes))
raise ValueError("Aucun fichier docx/doc trouvé dans l'archive")
def parse_document_xml(docx_zip: zipfile.ZipFile) -> etree._ElementTree:
"""Parse le document.xml principal"""
xml_bytes = docx_zip.read('word/document.xml')
parser = etree.XMLParser(remove_blank_text=True)
return etree.fromstring(xml_bytes, parser=parser)
def clean_document_xml(root: etree._Element) -> None:
"""Nettoie le XML en modifiant l'arbre directement"""
# Suppression des balises <w:del> et leur contenu
for del_elem in root.xpath('//w:del', namespaces=NSMAP):
parent = del_elem.getparent()
if parent is not None:
parent.remove(del_elem)
# Désencapsulation des balises <w:ins>
for ins_elem in root.xpath('//w:ins', namespaces=NSMAP):
parent = ins_elem.getparent()
index = parent.index(ins_elem)
for child in ins_elem.iterchildren():
parent.insert(index, child)
index += 1
parent.remove(ins_elem)
# Nettoyage des commentaires
for tag in ['w:commentRangeStart', 'w:commentRangeEnd', 'w:commentReference']:
for elem in root.xpath(f'//{tag}', namespaces=NSMAP):
parent = elem.getparent()
if parent is not None:
parent.remove(elem)
def create_modified_docx(original_zip: zipfile.ZipFile, modified_root: etree._Element) -> bytes:
"""Crée un nouveau docx avec le XML modifié"""
output = io.BytesIO()
with zipfile.ZipFile(output, 'w', compression=zipfile.ZIP_DEFLATED) as new_zip:
# Copier tous les fichiers non modifiés
for file in original_zip.infolist():
if file.filename != 'word/document.xml':
new_zip.writestr(file, original_zip.read(file.filename))
# Ajouter le document.xml modifié
xml_str = etree.tostring(
modified_root,
xml_declaration=True,
encoding='UTF-8',
pretty_print=True
)
new_zip.writestr('word/document.xml', xml_str)
output.seek(0)
return output.getvalue()
def docx_to_txt(doc_id: str, url: str):
docx_zip = get_docx_archive(url)
root = parse_document_xml(docx_zip)
clean_document_xml(root)
modified_bytes = create_modified_docx(docx_zip, root)
input_path = f"/tmp/{doc_id}_cleaned.docx"
output_path = f"/tmp/{doc_id}_cleaned.txt"
with open(input_path, "wb") as f:
f.write(modified_bytes)
subprocess.run([
"libreoffice",
"--headless",
"--convert-to", "txt",
"--outdir", "/tmp",
input_path
], check=True)
with open(output_path, "r", encoding="utf-8") as f:
txt_data = [line.strip() for line in f if line.strip()]
os.remove(input_path)
os.remove(output_path)
return txt_data
@app.get("/")
def render_page():
return FileResponse("index.html")
@app.post("/get_meetings", response_model=MeetingsResponse)
def get_meetings(req: MeetingsRequest):
working_group = req.working_group
tsg = re.sub(r"\d+", "", working_group)
wg_number = re.search(r"\d", working_group).group(0)
logging.debug(tsg, wg_number)
url = "https://www.3gpp.org/ftp/tsg_" + tsg
logging.debug(url)
resp = requests.get(url, verify=False)
soup = BeautifulSoup(resp.text, "html.parser")
meeting_folders = []
all_meetings = []
wg_folders = [item.get_text() for item in soup.select("tr td a")]
selected_folder = None
for folder in wg_folders:
if "wg" + str(wg_number) in folder.lower():
selected_folder = folder
break
url += "/" + selected_folder
logging.debug(url)
if selected_folder:
resp = requests.get(url, verify=False)
soup = BeautifulSoup(resp.text, "html.parser")
meeting_folders = [item.get_text() for item in soup.select("tr td a") if item.get_text(
).startswith("TSG") or (item.get_text().startswith("CT") and "-" in item.get_text())]
all_meetings = [working_group + "#" + meeting.split("_", 1)[1].replace("_", " ").replace(
"-", " ") if meeting.startswith('TSG') else meeting.replace("-", "#") for meeting in meeting_folders]
return MeetingsResponse(meetings=dict(zip(all_meetings, meeting_folders)))
@app.post("/get_dataframe", response_model=DataResponse)
def get_change_request_dataframe(req: DataRequest):
working_group = req.working_group
tsg = re.sub(r"\d+", "", working_group)
wg_number = re.search(r"\d", working_group).group(0)
url = "https://www.3gpp.org/ftp/tsg_" + tsg
logging.info("Fetching TDocs dataframe")
resp = requests.get(url, verify=False)
soup = BeautifulSoup(resp.text, "html.parser")
wg_folders = [item.get_text() for item in soup.select("tr td a")]
selected_folder = None
for folder in wg_folders:
if str(wg_number) in folder:
selected_folder = folder
break
url += "/" + selected_folder + "/" + req.meeting + "/docs"
resp = requests.get(url, verify=False)
soup = BeautifulSoup(resp.text, "html.parser")
files = [item.get_text() for item in soup.select("tr td a")
if item.get_text().endswith(".xlsx")]
def gen_url(tdoc: str):
return f"{url}/{tdoc}.zip"
df = pd.read_excel(str(url + "/" + files[0]).replace("#", "%23"))
filtered_df = df[(((df["Type"] == "CR") & ((df["CR category"] == "B") | (df["CR category"] == "C"))) | (df["Type"] == "pCR")) & ~(
df["Uploaded"].isna())][["TDoc", "Title", "CR category", "Source", "Type", "Agenda item", "Agenda item description", "TDoc Status"]]
filtered_df["URL"] = filtered_df["TDoc"].apply(gen_url)
df = filtered_df.fillna("")
return DataResponse(data=df[["TDoc", "Title", "Type", "TDoc Status", "Agenda item description", "URL"]].to_dict(orient="records"))
@app.post("/download_tdocs")
def download_tdocs(req: DownloadRequest):
documents = req.documents
def process_document(doc: str):
doc_id = doc
url = requests.post(
'https://organizedprogrammers-3gppdocfinder.hf.space/find',
headers={"Content-Type": "application/json"},
data=json.dumps({"doc_id": doc_id}),
verify=False
)
print(url.status_code)
url = url.json()['url']
print(url)
try:
txt = "\n".join(docx_to_txt(doc_id, url))
except Exception as e:
txt = f"Document {doc_id} text extraction failed: {e}"
return doc_id, txt.encode("utf-8")
def process_batch(batch):
results = {}
for doc in batch:
try:
doc_id, file_bytes = process_document(doc)
results[doc_id] = file_bytes
except Exception as e:
traceback.print_exception(e)
results[doc] = b"Erreur"
return results
documents_bytes = process_batch(documents)
zip_buffer = io.BytesIO()
with zipfile.ZipFile(zip_buffer, mode='w', compression=zipfile.ZIP_DEFLATED) as zip_file:
for doc_id, txt_data in documents_bytes.items():
zip_file.writestr(f'{doc_id}.txt', txt_data)
zip_buffer.seek(0)
return StreamingResponse(
zip_buffer,
media_type="application/zip"
)
@app.post("/generate_requirements", response_model=RequirementsResponse)
async def gen_reqs(req: RequirementsRequest, background_tasks: BackgroundTasks):
documents = req.documents
n_docs = len(documents)
logging.info("Generating requirements for documents: {}".format([doc.document for doc in documents]))
def prompt(doc_id, full):
return f"Here's the document whose ID is {doc_id} : {full}\n\nExtract all requirements and group them by context, returning a list of objects where each object includes a document ID, a concise description of the context where the requirements apply (not a chapter title or copied text), and a list of associated requirements; always return the result as a list, even if only one context is found. Remove the errors"
async def process_document(doc):
doc_id = doc.document
url = doc.url
try:
full = "\n".join(docx_to_txt(doc_id, url))
except Exception as e:
traceback.print_exception(e)
return RequirementsResponse(requirements=[DocRequirements(document=doc_id, context="Error LLM", requirements=[])]).requirements
try:
model_used = "gemini-v2" # À adapter si fallback activé
async with limiter_mapping[model_used]:
resp_ai = await llm_router.acompletion(
model=model_used,
messages=[
{"role": "user", "content": prompt(doc_id, full)}],
response_format=RequirementsResponse
)
return RequirementsResponse.model_validate_json(resp_ai.choices[0].message.content).requirements
except Exception as e:
if "rate limit" in str(e).lower():
try:
model_used = "gemini-v2" # À adapter si fallback activé
async with limiter_mapping[model_used]:
resp_ai = await llm_router.acompletion(
model=model_used,
messages=[
{"role": "user", "content": prompt(doc_id, full)}],
response_format=RequirementsResponse
)
return RequirementsResponse.model_validate_json(resp_ai.choices[0].message.content).requirements
except Exception as fallback_e:
traceback.print_exception(fallback_e)
return RequirementsResponse(requirements=[DocRequirements(document=doc_id, context="Error LLM", requirements=[])]).requirements
else:
traceback.print_exception(e)
return RequirementsResponse(requirements=[DocRequirements(document=doc_id, context="Error LLM", requirements=[])]).requirements
async def process_batch(batch):
results = await asyncio.gather(*(process_document(doc) for doc in batch))
return [item for sublist in results for item in sublist]
all_requirements = []
if n_docs <= 30:
batch_results = await process_batch(documents)
all_requirements.extend(batch_results)
else:
batch_size = 30
batches = [documents[i:i + batch_size]
for i in range(0, n_docs, batch_size)]
for i, batch in enumerate(batches):
batch_results = await process_batch(batch)
all_requirements.extend(batch_results)
if i < len(batches) - 1:
background_tasks.add_task(asyncio.sleep, 60)
return RequirementsResponse(requirements=all_requirements)
@app.post("/get_reqs_from_query", response_model=ReqSearchResponse)
def find_requirements_from_problem_description(req: ReqSearchRequest):
requirements = req.requirements
query = req.query
requirements_text = "\n".join(
[f"[Selection ID: {r.req_id} | Document: {r.document} | Context: {r.context} | Requirement: {r.requirement}]" for r in requirements])
print("Called the LLM")
resp_ai = llm_router.completion(
model="gemini-v2",
messages=[{"role": "user", "content": f"Given all the requirements : \n {requirements_text} \n and the problem description \"{query}\", return a list of 'Selection ID' for the most relevant corresponding requirements that reference or best cover the problem. If none of the requirements covers the problem, simply return an empty list"}],
response_format=ReqSearchLLMResponse
)
print("Answered")
print(resp_ai.choices[0].message.content)
out_llm = ReqSearchLLMResponse.model_validate_json(
resp_ai.choices[0].message.content).selected
if max(out_llm) > len(requirements) - 1:
raise HTTPException(
status_code=500, detail="LLM error : Generated a wrong index, please try again.")
return ReqSearchResponse(requirements=[requirements[i] for i in out_llm])