Spaces:
Runtime error
Runtime error
import gradio as gr | |
import random | |
import time | |
from peft import PeftModel | |
from transformers import LLaMATokenizer, LLaMAForCausalLM, GenerationConfig | |
tokenizer = LLaMATokenizer.from_pretrained("decapoda-research/llama-7b-hf") | |
model = LLaMAForCausalLM.from_pretrained( | |
"decapoda-research/llama-7b-hf", | |
load_in_8bit=True, | |
device_map="auto", | |
) | |
model = PeftModel.from_pretrained(model, "tloen/alpaca-lora-7b") | |
def generate_prompt(instruction, input=None): | |
if input: | |
return f"""Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request. | |
### Instruction: | |
{instruction} | |
### Input: | |
{input} | |
### Response:""" | |
else: | |
return f"""Below is an instruction that describes a task. Write a response that appropriately completes the request. | |
### Instruction: | |
{instruction} | |
### Response:""" | |
generation_config = GenerationConfig( | |
temperature=0.1, | |
top_p=0.75, | |
num_beams=4, | |
) | |
def evaluate(instruction, input=None): | |
prompt = generate_prompt(instruction, input) | |
inputs = tokenizer(prompt, return_tensors="pt") | |
input_ids = inputs["input_ids"].cuda() | |
generation_output = model.generate( | |
input_ids=input_ids, | |
generation_config=generation_config, | |
return_dict_in_generate=True, | |
output_scores=True, | |
max_new_tokens=256 | |
) | |
for s in generation_output.sequences: | |
output = tokenizer.decode(s) | |
print("Response:", output.split("### Response:")[1].strip()) | |
with gr.Blocks() as demo: | |
chatbot = gr.Chatbot() | |
msg = gr.Textbox() | |
clear = gr.Button("Clear") | |
def user(user_message, history): | |
return "", history + [[user_message, None]] | |
def bot(history): | |
bot_message = evaluate(input("Instruction: {}".format(history))) | |
history[-1][1] = bot_message | |
time.sleep(1) | |
return history | |
msg.submit(user, [msg, chatbot], [msg, chatbot], queue=False).then( | |
bot, chatbot, chatbot | |
) | |
clear.click(lambda: None, None, chatbot, queue=False) | |
demo.launch() |