|
import gradio as gr |
|
|
|
def caption(image,input_module1): |
|
instances_names = ["T-shirt/top", "Trouser", "Pullover", "Dress", "Coat", |
|
"Sandal", "Shirt", "Sneaker", "Bag", "Ankle boot"] |
|
image=image.reshape(1,28*28) |
|
if input_module1=="KNN": |
|
KNN_classifier = KNeighborsClassifier(n_neighbors=5, metric = 'euclidean') |
|
output1=KNN_classifier.predict(image)[0] |
|
predictions=KNN_classifier.predict_proba(image)[0] |
|
|
|
elif input_module1==("Linear discriminant analysis"): |
|
clf = LinearDiscriminantAnalysis() |
|
output1=clf.predict(image)[0] |
|
predictions=clf.predict_proba(image)[0] |
|
|
|
elif input_module1==("Quadratic discriminant analysis"): |
|
qda = QuadraticDiscriminantAnalysis() |
|
output1=qda.predict(image)[0] |
|
predictions=qda.predict_proba(image)[0] |
|
|
|
elif input_module1=="Naive Bayes classifier": |
|
gnb = GaussianNB() |
|
output1=gnb.predict(image)[0] |
|
predictions=gnb.predict_proba(image)[0] |
|
|
|
output2 = {} |
|
|
|
for i in range(len(predictions)): |
|
output2[instances_names[i]] = predictions[i] |
|
return output1 ,output2 |
|
|
|
input_module = gr.inputs.Image(label = "Input Image",image_mode="L",shape=(28,28)) |
|
input_module1 = gr.inputs.Dropdown(choices=["KNN","Linear discriminant analysis", "Quadratic discriminant analysis","Naive Bayes classifier"], label = "Method") |
|
output1 = gr.outputs.Textbox(label = "Predicted Class") |
|
output2=gr.outputs.Label(label= "probability of class") |
|
gr.Interface(fn=caption, inputs=[input_module,input_module1], outputs=[output1,output2]).launch(debug=True) |