Spaces:
Runtime error
Runtime error
import gradio as gr | |
import hopsworks | |
import joblib | |
import pandas as pd | |
import numpy as np | |
import folium | |
import json | |
import time | |
from datetime import timedelta, datetime | |
from branca.element import Figure | |
from functions import decode_features, get_model | |
def greet(name): | |
project = hopsworks.login() | |
fs = project.get_feature_store() | |
feature_view = fs.get_feature_view( | |
name = 'hel_air_fv1', | |
version = 1 | |
) | |
start_time = 1668985200000 | |
#start_date = datetime.now() - timedelta(days=1) | |
#start_time = int(start_date.timestamp()) * 1000 | |
X = feature_view.get_batch_data(start_time=start_time) | |
latest_date_unix = str(X.date.values[0])[:10] | |
latest_date = time.ctime(int(latest_date_unix)) | |
X = X.drop(columns=["date"]).fillna(0) | |
model = get_model(project=project, | |
model_name="gradient_boost_model", | |
evaluation_metric="f1_score", | |
sort_metrics_by="max") | |
preds = model.predict(X) | |
# cities = [city_tuple[0] for city_tuple in cities_coords.keys()] | |
next_day_date = datetime.today() + timedelta(days=1) | |
next_day = next_day_date.strftime ('%d/%m/%Y') | |
# df = pd.DataFrame(data=preds[0], columns=[f"AQI Predictions for {next_day}"], dtype=int) | |
str1 = "" | |
# return int(preds[0]) | |
for x in range(8): | |
if(x != 0): | |
str1 += (datetime.now() + timedelta(days=x)).strftime('%Y-%m-%d') + " predicted aqi: " + str(int(preds[len(preds) - 8 + x]))+"\n" | |
print(str1) | |
return str1 | |
demo = gr.Interface(fn=greet, inputs="text", outputs="text") | |
if __name__ == "__main__": | |
demo.launch() |