Spaces:
Runtime error
Runtime error
from datetime import datetime | |
import requests | |
import os | |
import joblib | |
import pandas as pd | |
import json | |
def decode_features(df, feature_view): | |
"""Decodes features in the input DataFrame using corresponding Hopsworks Feature Store transformation functions""" | |
df_res = df.copy() | |
import inspect | |
td_transformation_functions = feature_view._batch_scoring_server._transformation_functions | |
res = {} | |
for feature_name in td_transformation_functions: | |
if feature_name in df_res.columns: | |
td_transformation_function = td_transformation_functions[feature_name] | |
sig, foobar_locals = inspect.signature(td_transformation_function.transformation_fn), locals() | |
param_dict = dict([(param.name, param.default) for param in sig.parameters.values() if param.default != inspect._empty]) | |
if td_transformation_function.name == "min_max_scaler": | |
df_res[feature_name] = df_res[feature_name].map( | |
lambda x: x * (param_dict["max_value"] - param_dict["min_value"]) + param_dict["min_value"]) | |
elif td_transformation_function.name == "standard_scaler": | |
df_res[feature_name] = df_res[feature_name].map( | |
lambda x: x * param_dict['std_dev'] + param_dict["mean"]) | |
elif td_transformation_function.name == "label_encoder": | |
dictionary = param_dict['value_to_index'] | |
dictionary_ = {v: k for k, v in dictionary.items()} | |
df_res[feature_name] = df_res[feature_name].map( | |
lambda x: dictionary_[x]) | |
return df_res | |
def get_air_json(AIR_QUALITY_API_KEY): | |
return requests.get(f'https://api.waqi.info/feed/Helsinki/?token={AIR_QUALITY_API_KEY}').json()['data'] | |
def get_air_quality_data1(): | |
AIR_QUALITY_API_KEY = os.getenv('AIR_QUALITY_API_KEY') | |
json = get_air_json(AIR_QUALITY_API_KEY) | |
print(json) | |
# iaqi = json['iaqi'] | |
# forecast = json['forecast']['daily'] | |
return [ | |
json['date'], # AQI | |
json['pm25'], | |
json['pm10'], | |
json['o3'], | |
json['no2'], | |
] | |
def get_air_quality_data(): | |
AIR_QUALITY_API_KEY = os.getenv('AIR_QUALITY_API_KEY') | |
json = get_air_json(AIR_QUALITY_API_KEY) | |
iaqi = json['iaqi'] | |
forecast = json['forecast']['daily'] | |
return [ | |
json['aqi'], # AQI | |
json['time']['s'][:10], # Date | |
iaqi['h']['v'], | |
iaqi['p']['v'], | |
iaqi['pm10']['v'], | |
iaqi['t']['v'], | |
forecast['o3'][0]['avg'], | |
forecast['o3'][0]['max'], | |
forecast['o3'][0]['min'], | |
forecast['pm10'][0]['avg'], | |
forecast['pm10'][0]['max'], | |
forecast['pm10'][0]['min'], | |
forecast['pm25'][0]['avg'], | |
forecast['pm25'][0]['max'], | |
forecast['pm25'][0]['min'], | |
forecast['uvi'][0]['avg'], | |
forecast['uvi'][0]['avg'], | |
forecast['uvi'][0]['avg'] | |
] | |
def get_air_quality_df1(data): | |
col_names = [ | |
'aqi', | |
'date', | |
'pm25', | |
'pm10', | |
'o3', | |
'no2', | |
] | |
new_data = pd.DataFrame( | |
data, | |
columns=col_names | |
) | |
new_data.date = new_data.date.apply(timestamp_2_time) | |
return new_data | |
def get_air_quality_df(data): | |
col_names = [ | |
'aqi', | |
'date', | |
'iaqi_h', | |
'iaqi_p', | |
'iaqi_pm10', | |
'iaqi_t', | |
'o3_avg', | |
'o3_max', | |
'o3_min', | |
'pm10_avg', | |
'pm10_max', | |
'pm10_min', | |
'pm25_avg', | |
'pm25_max', | |
'pm25_min', | |
'uvi_avg', | |
'uvi_max', | |
'uvi_min', | |
] | |
new_data = pd.DataFrame( | |
data, | |
columns=col_names | |
) | |
new_data.date = new_data.date.apply(timestamp_2_time1) | |
return new_data | |
def get_weather_json(date, WEATHER_API_KEY): | |
return requests.get(f'https://weather.visualcrossing.com/VisualCrossingWebServices/rest/services/timeline/helsinki/{date}?unitGroup=metric&include=days&key={WEATHER_API_KEY}&contentType=json').json() | |
def get_weather_data(date): | |
WEATHER_API_KEY = os.getenv('WEATHER_API_KEY') | |
json = get_weather_json(date, WEATHER_API_KEY) | |
data = json['days'][0] | |
return [ | |
json['address'].capitalize(), | |
data['datetime'], | |
data['tempmax'], | |
data['tempmin'], | |
data['temp'], | |
data['feelslikemax'], | |
data['feelslikemin'], | |
data['feelslike'], | |
data['dew'], | |
data['humidity'], | |
data['precip'], | |
data['precipprob'], | |
data['precipcover'], | |
data['snow'], | |
data['snowdepth'], | |
data['windgust'], | |
data['windspeed'], | |
data['winddir'], | |
data['pressure'], | |
data['cloudcover'], | |
data['visibility'], | |
data['solarradiation'], | |
data['solarenergy'], | |
data['uvindex'], | |
data['conditions'] | |
] | |
def get_weather_df(data): | |
col_names = [ | |
'city', | |
'date', | |
'tempmax', | |
'tempmin', | |
'temp', | |
'feelslikemax', | |
'feelslikemin', | |
'feelslike', | |
'dew', | |
'humidity', | |
'precip', | |
'precipprob', | |
'precipcover', | |
'snow', | |
'snowdepth', | |
'windgust', | |
'windspeed', | |
'winddir', | |
'pressure', | |
'cloudcover', | |
'visibility', | |
'solarradiation', | |
'solarenergy', | |
'uvindex', | |
'conditions' | |
] | |
new_data = pd.DataFrame( | |
data, | |
columns=col_names | |
) | |
new_data.date = new_data.date.apply(timestamp_2_time1) | |
return new_data | |
def timestamp_2_time1(x): | |
dt_obj = datetime.strptime(str(x), '%Y-%m-%d') | |
dt_obj = dt_obj.timestamp() * 1000 | |
return int(dt_obj) | |
def timestamp_2_time(x): | |
dt_obj = datetime.strptime(str(x), '%m/%d/%Y') | |
dt_obj = dt_obj.timestamp() * 1000 | |
return int(dt_obj) |