Spaces:
Runtime error
Runtime error
| from datetime import datetime | |
| import requests | |
| import os | |
| import joblib | |
| import pandas as pd | |
| import json | |
| def get_weather_csv(): | |
| return requests.get(f'https://weather.visualcrossing.com/VisualCrossingWebServices/rest/services/timeline/helsinki?unitGroup=metric&include=days&key=FYYH5HKD9558HBXD2D6KWXDGH&contentType=csv').csv() | |
| def get_weather_json_quick(date): | |
| return requests.get(f'https://weather.visualcrossing.com/VisualCrossingWebServices/rest/services/timeline/helsinki/{date}/{date}?unitGroup=metric&include=days&key=J7TT2WGMUNNHD8JBEDXAJJXB2&contentType=json').json() | |
| def get_air_quality_data(): | |
| AIR_QUALITY_API_KEY = os.getenv('AIR_QUALITY_API_KEY') | |
| json = get_air_json(AIR_QUALITY_API_KEY) | |
| iaqi = json['iaqi'] | |
| forecast = json['forecast']['daily'] | |
| return [ | |
| json['aqi'], # AQI | |
| json['time']['s'][:10], # Date | |
| iaqi['h']['v'], | |
| iaqi['p']['v'], | |
| iaqi['pm10']['v'], | |
| iaqi['t']['v'], | |
| forecast['o3'][0]['avg'], | |
| forecast['o3'][0]['max'], | |
| forecast['o3'][0]['min'], | |
| forecast['pm10'][0]['avg'], | |
| forecast['pm10'][0]['max'], | |
| forecast['pm10'][0]['min'], | |
| forecast['pm25'][0]['avg'], | |
| forecast['pm25'][0]['max'], | |
| forecast['pm25'][0]['min'], | |
| forecast['uvi'][0]['avg'], | |
| forecast['uvi'][0]['avg'], | |
| forecast['uvi'][0]['avg'] | |
| ] | |
| def get_weather_data(json): | |
| #WEATHER_API_KEY = os.getenv('WEATHER_API_KEY') | |
| #csv = get_weather_csv() | |
| data = json['days'][0] | |
| print("data parsed sccessfully") | |
| #return [ | |
| # #json['address'].capitalize(), | |
| # data['datetime'], | |
| # data['feelslikemax'], | |
| # data['feelslikemin'], | |
| # data['feelslike'], | |
| # data['dew'], | |
| # data['humidity'], | |
| # data['precip'], | |
| # data['precipprob'], | |
| # data['precipcover'], | |
| # data['snow'], | |
| # data['snowdepth'], | |
| # data['windgust'], | |
| # data['windspeed'], | |
| # data['winddir'], | |
| # data['pressure'], | |
| # data['cloudcover'], | |
| # data['visibility'], | |
| # data['solarradiation'], | |
| # data['solarenergy'], | |
| # data['uvindex'], | |
| # data['conditions'] | |
| #] | |
| return data | |
| def get_weather_df(data): | |
| col_names = [ | |
| 'name', | |
| 'datetime', | |
| 'tempmax', | |
| 'tempmin', | |
| 'temp', | |
| 'feelslikemax', | |
| 'feelslikemin', | |
| 'feelslike', | |
| 'dew', | |
| 'humidity', | |
| 'precip', | |
| 'precipprob', | |
| 'precipcover', | |
| 'snow', | |
| 'snowdepth', | |
| 'windgust', | |
| 'windspeed', | |
| 'winddir', | |
| 'sealevelpressure', | |
| 'cloudcover', | |
| 'visibility', | |
| 'solarradiation', | |
| 'solarenergy', | |
| 'uvindex', | |
| 'conditions' | |
| ] | |
| new_data = pd.DataFrame( | |
| data, | |
| columns=col_names | |
| ) | |
| new_data.datetime = new_data.datetime.apply(timestamp_2_time1) | |
| #new_data.rename(columes={'pressure':'sealevelpressure'}) | |
| return new_data | |
| def timestamp_2_time1(x): | |
| dt_obj = datetime.strptime(str(x), '%Y-%m-%d') | |
| dt_obj = dt_obj.timestamp() * 1000 | |
| return int(dt_obj) | |
| def timestamp_2_time(x): | |
| dt_obj = datetime.strptime(str(x), '%m/%d/%Y') | |
| dt_obj = dt_obj.timestamp() * 1000 | |
| return int(dt_obj) | |